964 resultados para Wireless instrumentation system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operational Modal Analysis is currently applied in structural dynamic monitoring studies using conventional wired based sensors and data acquisition platforms. This approach, however, becomes inadequate in cases where the tests are performed in ancient structures with esthetic concerns or in others, where the use of wires greatly impacts the monitoring system cost and creates difficulties in the maintenance and deployment of data acquisition platforms. In these cases, the use of sensor platforms based on wireless and MEMS would clearly benefit these applications. This work presents a first attempt to apply this wireless technology to the structural monitoring of historical masonry constructions in the context of operational modal analysis. Commercial WSN platforms were used to study one laboratory specimen and one of the structural elements of a XV century building in Portugal. Results showed that in comparison to the conventional wired sensors, wireless platforms have poor performance in respect to the acceleration time series recorded and the detection of modal shapes. However, for frequency detection issues, reliable results were obtained, especially when random excitation was used as noise source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technical report describes the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator that implements a simulation model of the repeater-based approach. This approach defines the mechanism to extend the PROFIBUS protocol to supprot wireless communication, in which the interconnection of the wired and wireless segments is done by a intermediate system operating at Physical Layer, as repeater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a low cost distributed system intended to increase the positioning accuracy of outdoor navigation systems based on the Global Positioning System (GPS). Since the accuracy of absolute GPS positioning is insufficient for many outdoor navigation tasks, another GPS based methodology – the Differential GPS (DGPS) – was developed in the nineties. The differential or relative positioning approach is based on the calculation and dissemination of the range errors of the received GPS satellites. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that, first, establishes Internet links with remote DGPS sources and, then, performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate outdoor navigation tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops an energy management system with integration of smart meters for electricity consumers in a smart grid context. The integration of two types of smart meters (SM) are developed: (i) consumer owned SM and (ii) distributor owned SM. The consumer owned SM runs over a wireless platform - ZigBee protocol and the distributor owned SM uses the wired environment - ModBus protocol. The SM are connected to a SCADA system (Supervisory Control And Data Acquisition) that supervises a network of Programmable Logic Controllers (PLC). The SCADA system/PLC network integrates different types of information coming from several technologies present in modern buildings. The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs, and the outer loop is managed by a centralized SCADA system, which interacts with the entire local PLC network. In order to implement advanced controllers, a communication channel was developed to allow the communication between the SCADA system and the MATLAB software. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, both scientific community and automotive industry enabled communications among vehicles in different kinds of scenarios proposing different vehicular architectures. Vehicular delay-tolerant networks (VDTNs) were proposed as a solution to overcome some of the issues found in other vehicular architectures, namely, in dispersed regions and emergency scenarios. Most of these issues arise from the unique characteristics of vehicular networks. Contrary to delay-tolerant networks (DTNs), VDTNs place the bundle layer under the network layer in order to simplify the layered architecture and enable communications in sparse regions characterized by long propagation delays, high error rates, and short contact durations. However, such characteristics turn contacts very important in order to exchange as much information as possible between nodes at every contact opportunity. One way to accomplish this goal is to enforce cooperation between network nodes. To promote cooperation among nodes, it is important that nodes share their own resources to deliver messages from others. This can be a very difficult task, if selfish nodes affect the performance of cooperative nodes. This paper studies the performance of a cooperative reputation system that detects, identify, and avoid communications with selfish nodes. Two scenarios were considered across all the experiments enforcing three different routing protocols (First Contact, Spray and Wait, and GeoSpray). For both scenarios, it was shown that reputation mechanisms that punish aggressively selfish nodes contribute to increase the overall network performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O uso da tecnologia tem crescido nas últimas décadas nas mais diversas áreas, seja na indústria ou no dia-a-dia, e é cada vez mais evidente os benefícios que traz. No desporto não é diferente. Cada dia surgem novos desenvolvimentos objetivando a melhoria do desempenho dos praticantes de atividades físicas, possibilitando atingir resultados nunca antes pensados. Além disto, a utilização da tecnologia no desporto permite a obtenção de dados biomecânicos que podem ser utilizados tanto no treinamento quando na melhoria da qualidade de vida dos atletas auxiliando na prevenção de lesões, por exemplo. Deste modo, o presente projeto se aplica na área do desporto, nomeadamente, na modalidade do surfe, onde a ausência de trabalhos científicos ainda é elevada, aliando a tecnologia eletrônica ao desporto para quantificar informações até então desconhecidas. Três fatores básicos de desempenho foram levantados, sendo eles: equilíbrio, posicionamento dos pés e movimentação da prancha de surfe. Estes fatores levaram ao desenvolvimento de um sistema capaz de medi-los dinamicamente através da medição das forças plantares e da rotação da prancha de surfe. Além da medição dos fatores, o sistema é capaz de armazenar os dados adquiridos localmente através de um cartão de memória, para posterior análise; e também enviá-los através de uma comunicação sem fio, permitindo a visualização do centro de pressões plantares; dos ângulos de rotação da prancha de surfe; e da ativação dos sensores; em tempo real. O dispositivo consiste em um sistema eletrônico embarcado composto por um microcontrolador ATMEGA1280; um circuito de aquisição e condicionamento de sinal analógico; uma central inercial; um módulo de comunicação sem fio RN131; e um conjunto de sensores de força Flexiforce. O firmware embarcado foi desenvolvido em linguagem C. O software Matlab foi utilizado para receção de dados e visualização em tempo real. Os testes realizados demostraram que o funcionamento do sistema atende aos requisitos propostos, fornecendo informação acerca do equilíbrio, através do centro de pressões; do posicionamento dos pés, através da distribuição das pressões plantares; e do movimento da prancha nos eixos pitch e roll, através da central inercial. O erro médio de medição de força verificado foi de -0.0012 ± 0.0064 N, enquanto a mínima distância alcançada na transmissão sem fios foi de 100 m. A potência medida do sistema foi de 330 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.