917 resultados para Wilson, Thomas, solicitor, agent to Lord Portman
Resumo:
Real-world design education projects present particular challenges when in a place remote from and distinctively different to students’ familiar territory. The teaching challenge is to assist students to translate the skills they learn at university into an entirely new context, facilitating a project they will learn from, and the community will value. In 2008 QUT design and engineering students undertook a project called Linking Karumba for this remote Queensland town. They engaged with a landscape, climate and community dramatically different from their base in urban Brisbane, and in a fortnight produced locally responsive strategic planning options. The theoretical approach to this was twofold: they needed to make a rapid shift along a continuum from being “outsiders” towards becoming “insiders” (Relph 1976), and to create designs responsive to local distinctiveness (Cumberlidge and Musgrave 2007). This paper outlines Linking Karumba’s teaching strategy via an analogy with the “immersion” method in bilingual education. Three teaching methods were adopted. Firstly, the overall framework drew on Brockbank and McGill (1998), and Thomas’ (2006a) approaches to student reflective practice. Within this, Girot’s “Four Trace Concepts” (1999) inspired exercises for finding Karumba and moving toward insideness; and a program of community engagement sought immersion in local distinctiveness, and “conversation” between the differing forms of knowledge and capacities embedded within the community and students (Armstrong 1999, Thomas 2006). The responsiveness of the student work to the character of Karumba’s culture and environment indicated remarkable levels of immersion, and the community highly valued the project outcomes: four strategic planning options which attracted $830 000 in state government funding for implementation.
Resumo:
Attempts to map online networks, representing relationships between people and sites, have covered sites including Facebook, Twitter, and blogs. However, the predominant approach of static network visualization, treating months of data as a single case rather than depicting changes over time or between topics, remains a flawed process. As different events and themes provoke varying interactions and conversations, it is proposed that case-by-case analysis would aid studies of online social networks by further examining the dynamics of links and information flows. This study uses hyperlink analysis of a population of French political blogs to compare connections between sites from January to August 2009. Themes discussed in this period were identified for subsequent analysis of topic-oriented networks. By comparing static blogrolls with topical citations within posts, this research addresses challenges and methods in mapping online networks, providing new information on temporal aspects of linking behaviors and information flows within these systems.
Resumo:
Velocity jump processes are discrete random walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity jump models are often used to represent a type of persistent motion, known as a “run and tumble”, which is exhibited by some isolated bacteria cells. All previous velocity jump processes are non-interacting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high cell density problems using a velocity jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.
Resumo:
The preparation of a series of nickel dichloride complexes with bulky diphosphinomethane chelate ligands R2PCH2PR′2 is reported. Reaction with the appropriate Grignard reagent leads to the corresponding dimethyl and dibenzyl complexes. Cationic monomethyl and mono-η3-benzyl complexes are generated from these dialkyl complexes by protonation with [H(OEt2)2]+[B(3,5-(CF3)2C6H3)4]−, while the complex [(dtbpm κ2P)Ni(η3-CH(CH2Ph)Ph]+[B(3,5-(CF3)2C6H3)4]−is obtained from protonation of the Ni(0) olefin complex (dtbpm-κ2P)N(η2-trans-stilbene). Crystal structures of examples of dichlorides, dimethyl, dibenzyl, cationic methyl, and cationic η3-benzyl complexes are reported. Solutions of the cations polymerize ethylene under mild conditions and without the necessity of an activating agent, to form polyethylene having high molecular weights and low degrees of chain branching. In comparison to the Ni methyl cations, the η3-benzyl cation complexes are more stable and somewhat less active but still very efficient in C2H4 polymerization. The effect on the resulting polyethylene of varying the substituents R, R′ on the phosphine ligand has been examined, and a clear trend for longer chain PE with less branching in the presence of more bulky substituents on the diphosphine has been found. Density functional calculations have been used to examine the rapid suprafacial η3 to η3 haptotropic shift processes of the[(R2PCH2PR′2)Ni] fragment and the η3−η1 change of the coordination mode of the benzyl group required for polymerization in those cations.
Resumo:
Random walk models based on an exclusion process with contact effects are often used to represent collective migration where individual agents are affected by agent-to-agent adhesion. Traditional mean field representations of these processes take the form of a nonlinear diffusion equation which, for strong adhesion, does not predict the averaged discrete behavior. We propose an alternative suite of mean-field representations, showing that collective migration with strong adhesion can be accurately represented using a moment closure approach.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
Unnatural amino acids are a growing class of intermediates required for pharmaceuticals, agrochemicals and other industrial products. However, no single method has proven sufficiently versatile to prepare these compounds broadly at scale. To address this need, we have developed a general chemoenzymatic process to prepare enantiomerically pure L- and D-amino acids in high yield by deracemization of racemic starting materials. This method involves the concerted action of an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of >99% from the starting racemate, and product yields of over 90%. This approach compares very favourably with resolution processes, which have a maximum single-pass yield of 50%. We have developed efficient methods to adapt the process towards new target compounds and to optimize key factors that influence process efficiency and offer competitive economics at scale.
Resumo:
The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.
Resumo:
A general chemo-enzymatic process has been developed to prepare enantiomerically pure L- and D-amino acids in high yield by deracemisation of racemic starting materials. The method has been developed from initial academic studies to be a robust, scalable industrial process. Unnatural amino acids, in high optical purity, are a rapidly growing class of intermediates required for pharmaceuticals, agrochemicals and other fine chemical applications. However, no single method has proven sufficiently adaptable to prepare these compounds generally at large scale. Our approach uses an enantioselective oxidase biocatalyst and a non-selective chemical reducing agent to effect the stereoinversion of one enantiomer and can result in an enantiomeric excess of > 99 % from a starting racemate, and product yields over 90 %. The current approach compares very favourably to resolution methods which have a maximum single pass yield of 50 %. Efficient methods have been developed to adapt the biocatalyst used in this process towards new target compounds and to optimise key factors which improve the process efficiency and offer competitive economics at scale.
Resumo:
Composite polymer insulators provide many advantages over the traditional porcelain insulators and they are increasingly being used at both transmission and distribution levels. In the present paper, an epoxy resin/silica nanocomposite dielectric material (NDM) structure is proposed and fabricated. Hydrophobic fumed silica is incorporated in epoxy resin matrix and acetone is adopted as media agent to effectively achieve homogenous dispersion of the nano-scale silica filler. The acetone also acts as diluents to reduce viscosity before the curing phase of epoxy resin and enables bubbles to escape from being trapped. Through partial discharge (PD) and surface aging tests, it is illustrated that the inception of surface discharge of the proposed NDM is relatively higher than that of the non-filled counterpart, and a better PD resistivity was observed in the negative half cycle regarding to applied AC voltage. Results of surface aging test indicate that surface discharge activity is retarded over the test conducting time. By contrast, surface discharge developed to the opposite way on the non-filled sample. Therefore, the proposed NDM could provide better safety reliability and lower maintenance cost to industrial application compared with nonfilled conventional epoxy resin.
Resumo:
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are a significant health concern, exacerbated by the rapid emergence of multidrug resistant strains refractory to antibiotic treatment. P fimbriae are strongly associated with upper urinary tract colonization due to specific binding to α-D-galactopyranosyl-(1-4)-β-D-galactopyranoside receptors in the kidneys. Thus, inhibiting P-fimbrial adhesion may reduce the incidence of UPEC-mediated UTI. E. coli 83972 is an asymptomatic bacteriuria isolate successfully used as a prophylactic agent to prevent UTI in human studies. We constructed a recombinant E. coli 83972 strain displaying a surface-located oligosaccharide P fimbriae receptor mimic that bound to P-fimbriated E. coli producing any of the 3 PapG adhesin variants. The recombinant strain, E. coli 83972:: lgtCE, impaired P fimbriae–mediated adhesion to human erythrocytes and kidney epithelial cells. Additionally, E. coli 83972::lgtCE impaired urine colonization by UPEC in a mouse UTI model, demonstrating its potential as a prophylactic agent to prevent UTI.
Resumo:
This paper discusses proposed changes to the Australian welfare state in the Welfare Review chaired by Patrick McClure and launched by Kevin Andrews, Minister for Social Services in the Abbott government, in a recent address to the Sydney Institute. Andrews cited the Beveridge Report of 1942, referring to Lord William Beveridge as the “godfather of the British post-war welfare state”, commending him for putting forward a plan for a welfare state providing a minimal level of support, constituting a bare safety net, rather than “stifling civil society and personal responsibility” through generous provision. In line with a key TASA conference theme of challenging institutions and identifying social and political change at local and global levels, this paper examines both the Beveridge Report and the McClure Report, identifying key issues and themes of relevance to current times in Australia.