983 resultados para Wild type


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maintenance by the kidney of stable plasma K(+) values is crucial, as plasma K(+) controls muscle and nerve activity. Since renal K(+) excretion is regulated by the circadian clock, we aimed to identify the ion transporters involved in this process. In control mice, the renal mRNA expression of H,K-ATPase type 2 (HKA2) is 25% higher during rest compared to the activity period. Conversely, under dietary K(+) restriction, HKA2 expression is ∼40% higher during the activity period. This reversal suggests that HKA2 contributes to the circadian regulation of K(+) homeostasis. Compared to their wild-type (WT) littermates, HKA2-null mice fed a normal diet have 2-fold higher K(+) renal excretion during rest. Under K(+) restriction, their urinary K(+) loss is 40% higher during the activity period. This inability to excrete K(+) "on time" is reflected in plasma K(+) values, which vary by 12% between activity and rest periods in HKA2-null mice but remain stable in WT mice. Analysis of the circadian expression of HKA2 regulators suggests that Nrf2, but not progesterone, contributes to its rhythmicity. Therefore, HKA2 acts to maintain the circadian rhythm of urinary K(+) excretion and preserve stable plasma K(+) values throughout the day.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endothelial cells form a semi-permeable barrier that participates in the exchange of plasma fluids, proteins and cells, and helps to maintain the physiological functions of organs as well as circulatory homeostasis. Vascular permeability and vasodilatation are increased during acute and chronic inflammation, cancer and wound healing. This is mediated by exposure to certain vascular permeability increasing factors, such as vascular endothelial growth factor (VEGF). The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor (NHRs) family of ligand-activated transcription factors. Three isotypes, PPARa, PPARp/5 and PPARy have been identified. They are all expressed in endothelial cells (ECs). Recent data have demonstrated their involvement in important mechanisms for vasculogenesis and angiogenesis, such as cell proliferation/differentiation, directional sensing/migration, and survival. PPARs were reported to modulate the expression of pro-angiogenic soluble factors, such as VEGF-A and may also participate in the regulation of expression of VEGF receptors. The aim of the present work was to elucidate the role of PPARp/δ in endothelial cell functions important for angiogenesis as well as in vascular permeability and vasodilatation. Using organ culture models of mouse aorta expiants, cultures of human umbilical vein endothelial cells (HUVECs) and genetically modified mouse models, we studied the consequences of loss and gain of PPARp/5 activity on endothelial cell functions. In the first part of this study, we show that the activation of PPARp/δ promotes EC outgrowth in murine aorta expiants. In vivo we observed that dermal vessel acute permeability in response to VEGF-A stimulation is strongly impaired in PPARfi/δ -I- animals. Additionally, observation of the dermal vessel morphology showed a clear enlargement of the wild-type dermal vessels upon VEGF-A injection, whereas vessels of PPARp/5 -/- animals showed almost no enlargement. The impaired response to VEGF stimulation in the knock-out animals was not due to structural or morphological abnormalities. Based on this data, we suggest that PPARp/5 may act on intracellular signaling cascades in ECs, downstream of the VEGF-A receptor. In the second part of this study, we address the relevance of PPARβ/δ vascular functions in pathophysiological inflammatory conditions, such as delayed- type hypersensitivity (DTH) reaction and anaphylaxis in mice. The DTH reaction is a cell-mediated immune reaction to protein, bacterial and viral antigens, whereas anaphylaxis is the most severe form of allergic reaction. In these in vivo models, we demonstrated that the absence of PPARβ/δ in ECs prevents the formation of severe edema in the DTH reaction, and that Ρ PARβ/δ accelerates recovery following systemic anaphylaxis, at least partially through the control of vascular permeability. Our data not only describe a novel function of PPARβ/δ in vessel permeability and vasodilatation, but also open new routes of research for the development of vessel permeability/vasodilatation regulating agents. - Les cellules endothéliales qui bordent la face interne des vaisseaux sanguins forment l'endothélium, une barrière semi-perméable qui régule les échanges de fluides, de protéines et de cellules immunes entre la circulation et les organes. L'endothélium participe également au maintien de la fonction des organes et de l'homéostasie circulatoire. La perméabilité vasculaire augmente dans des situations inflammatoires aigties ou chroniques, dans les tumeurs, et pendant la réparation de blessures. Cette augmentation de perméabilité est due à la production de facteurs sécrétés, tels que le Vascular Endothelial Growth Factor (VEGF-A), la thrombine ou I'histamine. Lès récepteurs nucléaires Peroxisome Proliferator-Activated Receptors (PPAR) sont des facteurs de transcription mis en activité par des ligands. Trois isotypes de PPARs, PPARa, ΡΡΑΡβ/δ and PPARy ont été caractérisés. Ils sont exprimés dans les cellules endothéliales, et des travaux récents ont montré qu'ils régulent des comportements cellulaires importants pour la vasculogenèse et l'angiogenèse, tels que la prolifération, la différenciation, la migration, et la survie des cellules. Ils régulent également la production de VEGF-A par divers types cellulaires. Le but de ce travail était d'élucider le rôle de PPARβ/δ dans la régulation de la perméabilité vasculaire, plus particulièrement dans les cellules endothéliales. Grâce à des cultures d'expiants d'aortes de souris, à la culture d'une lignée endothéliale humaine (HUVECs) et de souris génétiquement modifiées, nous avons étudié le rôle de PPARβ/δ dans les cellules endothéliales, dans des situations gain et perte de fonction du récepteur. Dans la première partie de ce travail, nous avons montré les propriétés pro-angiogéniques de PPARβ/δ dans des explants d'aortes. In vivo, nous avons observé l'absence d'hyperperméabilité aiguë induite par le VEGF-A, la thrombine et I'histamine chez les souris PPARβ/δ -/-. De plus, l'analyse morphologique des vaisseaux dans le derme des souris après stimulation par VEGF- A a confirmé l'absence de réponse à la stimulation. Ces analyses morphologiques nous ont également permis de montrer que l'absence de réponse aiguë n'était pas due à un défaut de structure des vaisseaux dermiques chez les souris PPARp/δ -/-. Sur la base de ces résultats, nous proposons que PPARp/δ régule des voies de signalisation intracellulaires dans les cellules endothéliales, voie de signalisation impliquées dans la régulation de la perméabilité vasculaire: Dans la seconde partie du travail, nous avons étudié l'importance de la régulation de la perméabilité vasculaire par PPARβ/δ dans des situations pathophysiologiques impliquant une hyperperméabilité aiguë des vaisseaux : une réaction d'hypersensibilité cutanée retardée d'une part (delayed-type hypersensitivity, DTH), et un choc anaphylactique d'autre part. Dans ces deux modèles induits expérimentalement chez la souris, l'absence de PPARβ/δ prévient en partie la formation de l'oedème inflammatoire local (DTH), et accélère la récupération (anaphylaxie), au moins partiellement en réglant la perméabilité vasculaire. Ces résultats ouvrent un nouveau champs d'étude quant au rôle de PPARβ/δ dans les vaisseaux et à d'éventuelles applications thérapeutiques dans des pathologies inflammatoires.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The autosomal recessive form of type I pseudohypoaldosteronism (PHA-I) is an inherited salt-losing syndrome resulting from diminution-of-function mutations in the 3 subunits of the epithelial Na+ channel (ENaC). A PHA-I stop mutation (alpha(R508stop)) of the ENaC alpha subunit is predicted to lack the second transmembrane domain and the intracellular COOH-terminus, regions of the protein involved in pore function. Nonetheless, we observed a measurable Na+ current in Xenopus laevis oocytes that coexpress the beta and gamma subunits with the truncated alpha subunit. The mutant alpha was coassembled with beta and gamma subunits and was present at the cell surface at a lower density, consistent with the lower Na+ current seen in oocytes with the truncated alpha subunit. The single-channel Na+ conductance for the mutant channel was only slightly decreased, and the appearance of the macroscopic currents was delayed by 48 hours with respect to wild-type. Our data suggest novel roles for the alpha subunit in the assembly and targeting of an active channel to the cell surface, and suggest that channel pores consisting of only the beta and gamma subunits can provide significant residual activity. This activity may be sufficient to explain the absence of a severe pulmonary phenotype in patients with PHA-I.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract The adult rat brain subventricular zone (SVZ) contains proliferative precursors that migrate to the olfactory bulb (OB) and differentiate into mature neurons. Recruitment of precursors constitutes a potential avenue for brain repair. We have investigated the kinetics and cellular specificity of transgene expression mediated by AAV2/1 vectors (i.e., adeno-associated virus type 2 pseudotyped with AAV1 capsid) in the SVZ. Self-complementary (sc) and single-stranded (ss) AAV2/1 vectors mediated efficient GFP expression, respectively, at 17 and 24 hr postinjection. Transgene expression was efficient in all the rapidly proliferating cells types, that is, Mash1(+) precursors (30% of the GFP(+) cells), Dlx2(+) neuronal progenitors (55%), Olig2(+) oligodendrocyte progenitors (35%), and doublecortin-positive (Dcx(+)) migrating cells (40%), but not in the slowly proliferating glial fibrillary acidic protein-positive (GFAP(+)) neural stem cell pool (5%). Because cell cycle arrest by wild-type and recombinant AAV has been described in primary cultures, we examined SVZ proliferative activity after vector injection. Indeed, cell proliferation was reduced immediately after vector injection but was normal after 1 month. In contrast, migration and differentiation of GFP(+) precursors were unaltered. Indeed, the proportion of Dcx(+) cells was similar in the injected and contralateral hemispheres. Furthermore, 1 month after vector injection into the SVZ, GFP(+) cells, found, as expected, in the OB granular cell layer, were mature GABAergic neurons. In conclusion, the rapid and efficient transgene expression in SVZ neural precursors mediated by scAAV2/1 vectors underlines their potential usefulness for brain repair via recruitment of immature cells. The observed transient precursor proliferation inhibition, not affecting their migration and differentiation, will likely not compromise this strategy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: A novel dinucleotide variant TT/∆G (ss469415590) has been associated with hepatitis C virus clearance. AIM: To assess the role of the ss469415590 variant, compared with the known IL28B polymorphisms (rs8099917, rs12979860 and rs12980275) for predicting virological response to therapy in chronic hepatitis C, and its association with the CXCL10 chemokine serum levels - a surrogate marker of interferon-stimulated genes activation. METHODS: Multivariate analysis of factors predicting rapid and sustained virological response in 280 consecutive, treatment-naïve, nondiabetic, Caucasian patients with chronic hepatitis C treated with peginterferon alpha and ribavirin. RESULTS: In hepatitis C virus genotype 1, the OR (95% CI) for rapid and sustained virological response for the wild-type ss469415590 TT was 9.88 (1.99-48.99) and 7.25 (1.91-27.51), respectively, similar to those found for rs12979860 CC [9.55 (1.93-47.37) and 6.30 (1.71-23.13)] and for rs12980275 AA [9.62 (1.94-47.77] and 7.83 (2.02-30.34)], but higher than for rs8099917 TT [4.8 (1.73-13.33) and 4.75 (2.05-10.98)]. In hepatitis C virus genotype 1, mean (SD) CXCL10 levels in patients with the TT/TT, TT/∆G and ∆G/∆G variants were, respectively, 355.1 (240.6), 434.4 (247.4) and 569.9 (333.3) (P = 0.04). In patients with genotypes 2 and 3 no significant association was found for TT/∆G with viral response. The predictive value of ss469415590 was stronger in patients with advanced fibrosis. CONCLUSIONS: The novel IL28B variants at marker ss469415590 predict response to IFN alpha in chronic hepatitis C patients, especially in those with advanced fibrosis. Their determination may be superior to that of known IL28B variants for patient management using IFN-based regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 uses ribosomal frameshifting for translation of the Gag-Pol polyprotein. Frameshift activities are thought to be tightly regulated. Analysis of gag p1 sequences from 270 plasma virions identified in 64% of the samples the occurrence of polymorphism that could lead to changes in thermodynamic stability of the stem-loop. Expression in Saccharomyces cerevisiae of p1-beta-galactosidase fusion proteins from 10 representative natural stem-loop variants and three laboratory mutant constructs (predicted the thermodynamic stability [Delta G degrees] ranging from -23.0 to -4.3 kcal/mol) identified a reduction in frameshift activity of 13 to 67% compared with constructs with the wild-type stem-loop (Delta G degrees, -23.5 kcal/mol). Viruses carrying stem-loops associated with greater than 60% reductions in frameshift activity presented profound defects in viral replication. In contrast, viruses with stem-loop structures associated with 16 to 42% reductions in frameshift efficiency displayed no significant viral replication deficit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mice with homologous disruption of the gene coding for the ligand-binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN-gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bovine herpesvirus type 5 (BoHV-5) is a major cause of viral meningoencephalitis in cattle. The expression of different viral proteins has been associated with BoHV-5 neuropathogenesis. Among these, gI, gE and US9 have been considered essential for the production of neurological disease in infected animals. To evaluate the role of gI, gE and US9 in neurovirulence, a recombinant from which the respective genes were deleted (BoHV-5 gI-/gE-/US9-) was constructed and inoculated in rabbits of two age groups (four and eight weeks-old). When the recombinant virus was inoculated through the paranasal sinuses of four weeks-old rabbits, neurological disease was observed and death was the outcome in 4 out of 13 (30.7 %) animals, whereas clinical signs and death were observed in 11/13 (84.6%) of rabbits infected with the parental virus. In eight weeks-old rabbits, the BoHV-5 gI-/gE-/US9- did not induce clinically apparent disease and could not be reactivated after dexamethasone administration, whereas wild type BoHV-5 caused disease in 55.5% of the animals and was reactivated. These findings reveal that the simultaneous deletion of gI, gE and US9 genes did reduce but did not completely abolish the neurovirulence of BoHV-5 in rabbits, indicating that other viral genes may also play a role in the induction of neurological disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this thesis was to develop new herpes simplex virus (HSV) vectors for gene therapy of experimental autoimmune encephalomyelitis (EAE), the principal model of multiple sclerosis (MS), and to study the pathogenesis of wild-type HSV-1 and HSV-1 vectors in vivo. By introducing potential immunomodulatory factors into mice with EAE we strived to develop therapies and possibly find molecules improving recovery from EAE. We aimed at altering the immune response by inducing favorable Th2-type cytokines, thus shifting the immune response from a Th1- or a Th17-response. Our HSV vector expressing interleukin (IL)-5 modulated the cytokine responses, decreased inflammation and alleviated EAE. The use of a novel method, bacterial artificial chromosome (BAC), for engineering recombinant HSV facilitated the construction of a new vector expressing leukemia inhibitory factor (LIF). LIF is a neurotropic cytokine with broad functions in the central nervous system (CNS). LIF promotes oligodendrocyte maturation and decreases demyelination and oligodendrocyte loss. The BAC-derived HSV-LIF vector alleviated the clinical symptoms, induced a higher number of oligodendrocytes and modulated T cell responses. By administering HSV via different infection routes, e.g. peripherally via the nose or eye, or intracranially to the brain, the effect of the immune response on HSV spread at different points of the natural infection route was studied. The intranasal infection was an effective delivery route of HSV to the trigeminal ganglion and CNS, whereas corneal infection displayed limited spread. The corneal and intranasal infections induced different peripheral immune responses, which might explain the observed differences in viral spread.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A chimeric yellow fever (YF)-dengue serotype 2 (dengue 2) virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.