943 resultados para Weakly Hyperbolic Equations
Resumo:
We present systems of Navier-Stokes equations on Cantor sets, which are described by the local fractional vector calculus. It is shown that the results for Navier-Stokes equations in a fractal bounded domain are efficient and accurate for describing fluid flow in fractal media.
Resumo:
In this paper, we establish the controllability for a class of abstract impulsive mixed-type functional integro-differential equations with finite delay in a Banach space. Some sufficient conditions for controllability are obtained by using the Mönch fixed point theorem via measures of noncompactness and semigroup theory. Particularly, we do not assume the compactness of the evolution system. An example is given to illustrate the effectiveness of our results.
Resumo:
This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.
Resumo:
IEE Proceedings - Vision, Image, and Signal Processing, Vol. 147, nº 1
Resumo:
In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Resumo:
River Flow 2010
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
Let and be matrices over an algebraically closed field. Let be elements of such that and . We give necessary and sufficient condition for the existence of matrices and similar to and, respectively, such that has eigenvalues.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.