996 resultados para Wave climate
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
Considerable effort has been devoted to quantifying the wave-induced soil response in a porous seabed in the last few decades. Most previous investigations have focused on the analysis of pore pressure and effective stresses within isotropic sediments, despite strong evidence of anisotropic soil behaviour reported in the literature. Furthermore, the seepage flux, which is important in the context of contaminant transport, has not been examined. In this paper, we focus on water wave-driven seepage in anisotropic marine sediments of finite thickness. The numerical results predict that the effects of hydraulic anisotropy and anisotropic soil behaviour on the wave-driven seepage in marine sediment are significant. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and delta(18)O were generated from a coral growing at Rarotonga (21.5degreesS, 159.5degreesW). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral delta(18)O is a function of both SST and seawater delta(18)O composition (delta(18)O(sw)). Here, we focus on extracting the delta(18)O(sw) signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral delta(18)O is a function of both SST and delta(18)O(sw). This method separates the effects of delta(18)O(sw) from SST by breaking the instantaneous changes of coral delta(18)O into separate contributions by instantaneous SST and delta(18)O(sw) changes, respectively. The results show that on average delta(18)O(sw) at Rarotonga explains similar to39% of the variance in delta(18)O and that variations in SST explains the remaining similar to61% of delta(18)O variance. Reconstructed delta(18)O(sw) shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The delta(18)O(sw) also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed delta(18)O(sw) and salinity makes it possible to use the reconstructed delta(18)O(sw) to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral delta(18)O and delta(18)O(sw) at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific. Copyright (C) 2002 Elsevier Science Ltd.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
The El Nino/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial interglacial cycle(1). ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time(2,3), but the proposals disagree on whether increased frequency of El Nino events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Nino events ( summer precipitation declines in El Nino years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard - Oeschger events - millennial-scale warm events in the North Atlantic climate record - although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (, 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.
Resumo:
This paper presents the results of a study on the analysis of training needs regarding environmental (green) management and climate change topics in micro and small enterprises (MSEs) in Brazil and its implications on education for sustainable development. It reports on an e-mail survey of Brazilian small enterprises, whose results indicate that they are indeed interested in environmental management and climate change topics in an education for sustainable development context. The study indicates that proposals for courses on environmental management and climate change should follow a systemic perspective and take sustainable development into account. By applying factor analysis, it was found that the topics of interest can be grouped into thematic modules, which can be useful in the design of training courses for the top management leaders of those companies.
Resumo:
This paper develops a multi-regional general equilibrium model for climate policy analysis based on the latest version of the MIT Emissions Prediction and Policy Analysis (EPPA) model. We develop two versions so that we can solve the model either as a fully inter-temporal optimization problem (forward-looking, perfect foresight) or recursively. The standard EPPA model on which these models are based is solved recursively, and it is necessary to simplify some aspects of it to make inter-temporal solution possible. The forward-looking capability allows one to better address economic and policy issues such as borrowing and banking of GHG allowances, efficiency implications of environmental tax recycling, endogenous depletion of fossil resources, international capital flows, and optimal emissions abatement paths among others. To evaluate the solution approaches, we benchmark each version to the same macroeconomic path, and then compare the behavior of the two versions under a climate policy that restricts greenhouse gas emissions. We find that the energy sector and CO(2) price behavior are similar in both versions (in the recursive version of the model we force the inter-temporal theoretical efficiency result that abatement through time should be allocated such that the CO(2) price rises at the interest rate.) The main difference that arises is that the macroeconomic costs are substantially lower in the forward-looking version of the model, since it allows consumption shifting as an additional avenue of adjustment to the policy. On the other hand, the simplifications required for solving the model as an optimization problem, such as dropping the full vintaging of the capital stock and fewer explicit technological options, likely have effects on the results. Moreover, inter-temporal optimization with perfect foresight poorly represents the real economy where agents face high levels of uncertainty that likely lead to higher costs than if they knew the future with certainty. We conclude that while the forward-looking model has value for some problems, the recursive model produces similar behavior in the energy sector and provides greater flexibility in the details of the system that can be represented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.
Resumo:
Methods Stepwise regression of annual data was applied to model incidence, calculated based on 91 cases, from lagged variables: antecedent precipitation, air temperature, soil water storage, absolute and relative air humidity, and Southern Oscillation Index (SOI). Results Multiple regression analyses resulted in a model, which explains 49% of the incidence variance, taking into account the absolute air humidity in the year of exposure, soil water storage and SOI of the previous 2 years. Conclusions The correlations may reflect enhanced fungal growth after increase in soil water storage in the longer term and greater spore release with increase in absolute air humidity in the short term.
Resumo:
Background: Current relevance of T-wave alternans is based on its association with electrical disorder and elevated cardiac risk. Quantitative reports would improve understanding on TWA augmentation mechanisms during mental stress or prior to tachyarrhythmias. However, little information is available about quantitative TWA values in clinical populations. This study aims to create and compare TWA profiles of healthy subjects and ICD patients, evaluated on treadmill stress protocols. Methods: Apparently healthy subjects, not in use of any medication were recruited. All eligible ICD patients were capable of performing an attenuated stress test. TWA analysis was performed during a 15-lead treadmill test. The derived comparative profile consisted of TWA amplitude and its associated heart rate, at rest (baseline) and at peak TWA value. Chi-square or Mann-Whitney tests were used with p values <= 0.05. Discriminatory performance was evaluated by a binary logistic regression model. Results: 31 healthy subjects (8F, 23M) and 32 ICD patients (10F, 22M) were different on baseline TWA (1 +/- 2 mu V; 8 +/- 9 mu V; p < 0.001) and peak TWA values (26 +/- 13 mu V; 37 +/- 20 mu V; p = 0,009) as well as on baseline TWA heart rate (79 +/- 10 bpm; 67 +/- 15 bpm; p < 0.001) and peak TWA heart rate (118 +/- 8 bpm; 90 +/- 17 bpm; p < 0.001). The logistic model yielded sensitivity and specificity values of 88.9% and 92.9%, respectively. Conclusions: Healthy subjects and ICD patients have distinct TWA profiles. The new TWA profile representation (in amplitude-heart rate pairs) may help comparison among different research protocols. Ann Noninvasive Electrocardiol 2009;14(2):108-118.