917 resultados para Wave breaking
Resumo:
Defense against malaria depends upon amplification of the spleen structure and function for the clearance of parasitized red blood cells (pRBC). We studied the distribution and amount of CD(34+) cells in the spleens of mice infected with rodent malaria. We sought to identify these cells in the spleen and determine their relationship to infection. C57BL/6J mice were infected with self-resolving, Plasmodium chabaudi CR, or one of the lethal rodent malaria strains, P. chabaudi AJ and P. berghei ANKA. We then recorded parasitemia, mortality, and the presence of CD(34+) cells in spleen, as determined by immunohistochemistry and flow cytometry. In the non-lethal strain, the spleen structure was maintained during amplification, but disrupted in lethal models. The abundance of CD(34+) cells increased in the red pulp on the 4th and 6th days p.i. in all models, and subsided on the 8th day p.i. Faint CD(34+) staining on the 8th day p.i., was probably due to differentiation of committed cell lineages. In this work, increase of spleen CD(34+) cells did not correlate with infection control. (c) 2009 Published by Elsevier Inc.
Resumo:
Arterial stiffness is an independent marker of cardiovascular events. Pulse wave velocity (PWV) is a validated method to detect arterial stiffness that can be influenced by several factors including age and blood pressure. However, it is not clear whether PWV could be influenced by circadian variations. In the present study, the authors measured blood pressure and carotid-femoral PWV measurements in 15 young healthy volunteers in 4 distinct periods: 8 am, noon, 4 pm, and 8 pm. No significant variations of systolic (P=.92), mean (P=.77), and diastolic (P=.66) blood pressure among 8 am (113 +/- 15, 84 +/- 8, 69 +/- 6 mm Hg), noon (114 +/- 13, 83 +/- 8, 68 +/- 6 mm Hg), 4 pm (114 +/- 13, 85 +/- 8, 70 +/- 7 mm Hg), and 8 pm (113 +/- 7, 83 +/- 10, 68 +/- 7 mm Hg), respectively, were observed. Similarly, carotid-femoral PWV did not change among the periods (8 am: 7.6 +/- 1.4 m/s, noon: 7.4 +/- 1.1 m/s, 4 pm: 7.6 +/- 1.0 m/s, 8 pm, 7.6 +/- 1.3 m/s; P=.85). Considering all measurements, mean blood pressure significantly correlated with PWV (r=.31; P=.016). In young healthy volunteers, there is no significant circadian variation of carotid-femoral PWV. These findings support the concept that it does not appear mandatory to perform PWV measurements at exactly the same period of the day. J Clin Hypertens (Greenwich). 2011;13:19-22. (c) 2010 Wiley Periodicals, Inc.
Resumo:
The sudden release of a mass of fluid in a channel generates a highly unsteady flow motion, called dam break wave. While industrial fluids exhibit sometimes non-Newtonian behaviours, the viscous fluid flow assumption remains a useful approximation for simplified analyses. In this study, new solutions of laminar dam break wave are proposed for a semi-infinite reservoir based upon the method of characteristics. The solutions yield simple explicit expressions of the wave front location, wave front celerity and instantaneous free-surface profiles that compare favourably with experimental observations. Both horizontal and sloping channel configurations are treated. The simplicity of the equations may allow future extension to more complicated fluid flows.
Resumo:
Sediment mobility measurements with a horizontal sand bed under non-breaking waves are reported. Conditions include no seepage and steady downward seepage corresponding to head gradients up to 2.5. The results indicate that infiltration tends to inhibit sediment mobility for a horizontal bcd of 0.2 mm quartz sand exposed to moderated wave induced bed shear stresses. The effect is weak for the parameter range of the present study. The two opposing effects of shear stress increase due to boundary layer thinning and the stabilizing downward drag are successfully accounted for through the modified Shields parameter of Nielsen [Nielsen, P., 1997. Coastal groundwater dynamics. Proc. Coastal Dynamics '97, Plymouth, ASCE, Dp, 546-555] using coefficients derived from independent studies. That is, from the shear stress experiments of Conley [Conley, D.C., 1993. Ventilated oscillatory boundary layers. PhD Thesis, University of California, San Diego, 74 pp.] and the slope stability experiments of Martin and Aral [Martin, C.S. and M.M. Aral, 1971. Seepage force on interfacial bed particles. J. Hydraulics Div., proc. ASCE, Vol. 97, No. Hy7, pp. 1081-1100]. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.
Resumo:
Individual differences in the variance of event-related potential (ERP) slow wave (SW) measures were examined. SW was recorded at prefrontal and parietal sites during memory and sensory trials of a delayed-response task in 391 adolescent twin pairs. Familial resemblance was identified and there was a strong suggestion of genetic influence. A common genetic factor influencing memory and sensory SW was identified at the prefrontal site (accounting for an estimated 35%-37% of the reliable variance) and at the parietal site (51%-52% of the reliable variance). Remaining reliable variance was influenced by unique environmental factors. Measurement error accounted for 24% to 30% of the total variance of each variable. The results show genetic independence for recording site, but not trial type, and suggest that the genetic factors identified relate more directly to brain structures, as defined by the cognitive functions they support, than to the cognitive networks that link them.
Resumo:
A survey (N= 352) was conducted among British passengers of a cross-channel ferry. The survey aimed to test hypotheses drawn from Realistic Group Conflict, Social Identity and Contact theories using mainly a correlational design. However, an intervention by members of the outgroup (French fishermen blockading a port) also allowed a quasi-experimental test of the effects of a direct experience of intergroup conflict. Results supported the hypotheses since conflict and national identification were associated with more negative and with less positive attitudes toward the outgroup, while contact had the reverse effects. In addition, the salience of group membership in the contact relationship weakly moderated the effect of contact.
Resumo:
We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.
Resumo:
INJECTABLE HEROIN MAINTENANCE has been advocated as a form of treatment for opioid dependence that would attract, and retain in treatment, addicts who have either not sought treatment or who have failed at other forms of treatment, including methadone maintenance. Advocates of heroin maintenance argue that it would increase the proportion of addicts in treatment and reduce heroin use, drug related crime, and deaths due to overdose.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.