997 resultados para Wave Prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Waist circumference has been identified as a valuable predictor of cardiovascular risk in children. The development of waist circumference percentiles and cut-offs for various ethnic groups are necessary because of differences in body composition. The purpose of this study was to develop waist circumference percentiles for Chinese children and to explore optimal waist circumference cut-off values for predicting cardiovascular risk factors clustering in this population.----- ----- Methods: Height, weight, and waist circumference were measured in 5529 children (2830 boys and 2699 girls) aged 6-12 years randomly selected from southern and northern China. Blood pressure, fasting triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose were obtained in a subsample (n = 1845). Smoothed percentile curves were produced using the LMS method. Receiver-operating characteristic analysis was used to derive the optimal age- and gender-specific waist circumference thresholds for predicting the clustering of cardiovascular risk factors.----- ----- Results: Gender-specific waist circumference percentiles were constructed. The waist circumference thresholds were at the 90th and 84th percentiles for Chinese boys and girls respectively, with sensitivity and specificity ranging from 67% to 83%. The odds ratio of a clustering of cardiovascular risk factors among boys and girls with a higher value than cut-off points was 10.349 (95% confidence interval 4.466 to 23.979) and 8.084 (95% confidence interval 3.147 to 20.767) compared with their counterparts.----- ----- Conclusions: Percentile curves for waist circumference of Chinese children are provided. The cut-off point for waist circumference to predict cardiovascular risk factors clustering is at the 90th and 84th percentiles for Chinese boys and girls, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface flow past a two-dimensional semi-infinite curved plate is considered, with emphasis given to solving for the shape of the resulting wave train that appears downstream on the surface of the fluid. This flow configuration can be interpreted as applying near the stern of a wide blunt ship. For steady flow in a fluid of finite depth, we apply the Wiener-Hopf technique to solve a linearised problem, valid for small perturbations of the uniform stream. Weakly nonlinear results found using a forced KdV equation are also presented, as are numerical solutions to the fully nonlinear problem, computed using a conformal mapping and a boundary integral technique. By considering different families of shapes for the semi-infinite plate, it is shown how the amplitude of the waves can be minimised. For plates that increase in height as a function of the direction of flow, reach a local maximum, and then point slightly downwards at the point at which the free surface detaches, it appears the downstream wavetrain can be eliminated entirely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.