995 resultados para Watershed management.
Resumo:
In 2004, Walnut Creek was placed on the 303d list of Impaired Waters due to a low biotic index (lack of aquatic life) during IDNR stream sampling events. Sediment originating from agriculture, streambank erosion, and channelization were listed as the most likely sources impacting aquatic life. In an effort to address these concerns, a preliminary study was completed of the multi-county watershed to identify priority areas. A Watershed Development & Planning Assistance Grant was then funded by the IDALS-DSC to conduct a detailed assessment of these prioritized sub-watersheds. The impending assessment of the watershed and the stream corridor revealed ample opportunities to address gully, sheet and rill erosion while addressing in-stream water velocity issues that plagued the riparian corridor. A comprehensive plan was developed comprised of a variety of best management practices to address the identified concerns. In 2009, this plan was submitted to the WIRB Board by the East Pottawattamie and Montgomery SWCDs and $489,455 was awarded to address concerns identified during watershed assessment inquiries. Despite adverse weather conditions, which has hampered conservation construction recently, this project has held fast to pre-project goals due to the fortitude of the project sponsors and the overwhelming participation by the watershed landowners. Unfortunately, state budget shortfalls are bringing project progress to a halt. As specified in the original WIRB funding request, practice funding for Year 3 was to come from the Division of Soil Conservation’s Watershed Protection Fund (WSPF). Due to Iowa’s budgetary restraints, the Walnut Creek WSPF application, which was submitted this spring, was not funded since no new applications in the state were funded. If funded again, this grant will serve as the critical step in continuing what is destined to be a true watershed success story.
Resumo:
The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This application proposes to assist landowners to construct five large sediment retention basins that will reduce sediment and phosphorus delivery from priority land in targeted sub-watersheds. The Alliance, with previous WIRB support, demonstrated that construction of these basins at strategically selected sites is one of the most cost effective measures to reduce sediment and phosphorus delivery to Rathbun Lake. Features of this project are: (1) use of geographic information system (GIS) analysis to identify potential basin sites; (2) assistance for landowners to construct 5 basins that will reduce the annual delivery of sediment by 1,500 tons and phosphorus by 5,000 pounds; (3) evaluation of the benefits from basin construction using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs including sediment retention basins to protect water quality.
Resumo:
Part of a phased approach, an intensive information and education program, construction of erosion control practices, and sediment control on construction sites is proposed. These proposed practices will manage sediment runoff and nutrient runoff on agricultural and urban areas. Sediment control “structures” such as waterways, wetlands, modified terraces, grade stabilization structures, sediment basins, and rain gardens is proposed and will be combined with nutrient and pesticide management and reduced tillage to reduce non-point source pollution. A reduction of 15% of the sediment and phosphorus delivered to a water body from priority areas will be looked at as a success in this short-term project focused primarily at education within the project area which is also, for the most part, the top 25% sediment load producing sub-watersheds. In addition, four urban areas have been identified as part of this project as needing immediate assistance. A combination of urban and agricultural conservation practices, shoreline revegetation, and education of landowners will be used to achieve these results on both the urban and the agricultural arena.
Resumo:
The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are: (1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs; (2) assistance for landowners to apply BMPs for 4,000 acres that will reduce the annual delivery of sediment by 6,000 tons and phosphorus by 20,000 pounds; (3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.
Resumo:
Little Clear Lake is a 162 acre natural lake located in the western part of Pocahontas County. The lake has a 375 acre watershed that is gently rolling with nearly 84% of the watershed in row crop production. The lake is listed on the Iowa DNR’s impaired waters list due to nutrients, siltation and exotic species (purple loosestrife). These impairments have been verified with in-lake monitoring and landowner conversations as well as watershed modeling. The watershed models estimates that the average sheet and rill erosion is 1.74 tons/acre/year and sediment delivery is .12 tons/acre/year with a total of 44 tons/year being delivered to Little Clear Lake. The goal of the Little Clear Lake Watershed Protection Plan is to (1) reduce sediment delivery to Little Clear Lake by 60%, or 26.5 tons annually, by installing best management practices within the watershed. Doing this will control nearly 100% of the of the lake’s drainage area; and (2) initiate an information and education campaign for residents within the Little Clear Lake watershed which will ultimately prepare the residents and landowners for future project implementation. In an effort to control sediment and nutrient loading the Little Clear Lake Watershed Protection Plan has included 3 sediment catch basin sites and 5 grade stabilization structures, which function to stabilize concentrated flow areas.
Resumo:
The Hurley Creek Watershed is a micro-watershed of approximately 2,211 acres (3.5 square miles), which drains into the Platte River southwest of Creston. The watershed is 64% urban and 36% rural. The urban area includes the bulk of the town of Creston (population 7,597) and the rural area is just north of Creston, which includes the origin of Hurley Creek. Hurley Creek Watershed was examined for improvements following a citizens group in 2004 determined a need and desire to make McKinley Lake, a 65-acre city-owned lake, a quality fishery and viable swimming lake, as it once was. As part of a major park improvement project over ten-plus years, the watershed improvement project is undertaken to reduce pollution entering the lake. In 2006, IOWATER volunteers, under guidance of the town’s consultants, sampled the stream in 8 locations throughout the year, a total of 92 samples. The samples, along with visual inspections of the creek, found three major impairments: 1) high E. Coli levels, 2) severe erosion, and 3) storm water management. Using the Watershed Project Planning Protocol, the consultant and a volunteer committee of interested citizens determined that five physical and three administrative actions should be undertaken. The request will help: identify sources of E. Coli and reduce its delivery into the watershed, control animal access, manage storm water, implement stream-bank stabilization, educate the public, and develop miscellaneous small projects on specific properties.
Resumo:
The city of Elliott has had an increase in nitrate levels in their community water supply located in the Coe Creek Watershed. They have been working with the IDNR Source Water Protection (SWP) Programs to conduct site investigations and have formed a SWP Planning Team. This Team has been reviewing the investigation findings, formed an action plan and studied different Best Management Practices (BMPs). After considering the BMPs the SWP Team made a recommendation to the Elliott City Council which included native grass seeding and a shallow water wetland. The Team also held an informational meeting for the citizens of Elliott. The goal of this meeting was to inform and educate the public of the Team findings and BMPs. The Elliott City Council approved the restoration of a shallow wetland with a native grass buffer. This whole project is 27 acres and includes a shallow water wetland with native grass buffer. This would be a long term method to reduce nitrates in the city wells. Elliott is partnering with the Natural Resources Conservation Service, Montgomery County Soil and Water Conservation District, Pheasants Forever, the Montgomery County Conservation Board, US Fish and Wildlife Service and the Montgomery County Board of Supervisors in the restoration of the shallow water wetland and native grass buffer.
Resumo:
The Competine Creek watershed is a 24,956 acre sub-watershed of Cedar Creek. The creek traverses portions of three counties, slicing through rich and highly productive Southern lowa Drift Plain soils. The watershed is suffering from excessive sediment delivery and frequent flash floods that have been exacerbated by recent high rainfall events. Assessment data reveals soil erosion estimated to be 38,435 tons/year and sediment delivery to the creek at 15,847 tons/year. The Competine Creek Partnership Project is seeking WIRB funds to merge with IDALS-DSC funds and local funds, all targeted for structural Best Management Practices (BMPs) within the 2,760 acres of High Priority Areas (HPAs) identified by the assessment process. The BMPs will include grade stabilization structures, water and sediment basins, tile-outlet terraces, CRP, and urban storm water conservation practices. In addition, Iowa State University Extension-Iowa Learning Farm is investing in the project by facilitating a crop sampling program utilizing fall stalk nitrate, phosphorous index, and soil conditioning index testing. These tests will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce sediment and nutrient delivery to Competine Creek.
Resumo:
The Lost Island Lake watershed is located in the prairie pothole region, a region dotted with glacial wetlands and shallow lakes. At 1,180 acres, Lost Island Lake is the state's fifth largest natural lake and its watershed is comprised of nearly 1,000 acres of wetland habitat, including Iowa 's largest natural wetland – Barringer Slough. Unfortunately, Lost Island and its associated wetlands are not functioning to their fullest ecological and water quality potential. In 2002 and 2004, Lost Island Lake was categorized as '·impaired'" on Iowa's Impaired Waters List. Frequent algal blooms and suspended solids drastically increase turbidity levels resulting in its impairment. To investigate these concerns, a two-year study and resulting Water Quality Improvement Plan were completed. The water quality study identified an overabundance of non-native common carp (Cyprinus carpio) in the lake and its surrounding wetlands as a primary cause of impairment. The goal of the Lost Island Lake Watershed Enhancement Project is to restore ecological health to Lost Island Lake and its intricate watershed resulting in improved water quality and a diverse native plant and wildlife community. The purpose of this grant is to obtain funding for the construction of two combination fish barriers and water control structures placed at key locations in the watershed within the Blue Wing Marsh complex. Construction of the fish barriers and water control structures would aid restoration efforts by preventing spawning common carp from entering wetlands in the watershed and establishing the ability to manage water levels in large wetland areas. Water level management is crucial in wetland health and exotic fish control. These two structures are part of a larger construction project that involves a total of four combination fish barriers and water control structures and one additional fish barrier. The entire Lost Island Lake Watershed Enhancement Project is a multi-year project, but the construction phase for the fish barriers and water control structures will be completed before December 31, 2011.
Resumo:
Brushy Creek is a tributary of the Raccoon River, which is a regular source of drinking water for over 400,000 Iowans. Regular monitoring by Des Moines Water Works (DMWW) and Agriculture’s Clean Water Alliance (ACWA) over the last eight years has shown the stream to be highly impaired for coliform bacteria and nitrate. Both Brushy Creek and the Raccoon River are on the 303(d) impaired waterbody list. A December 2005 fish kill in Brushy Creek resulted in administrative actions against seven livestock producers. Several open feed lots exist in the watershed. The community of Roselle (in the Brushy Creek watershed) has been identified by IDNR as unsewered, and many dwellings throughout the watershed discharge untreated human waste. No Watershed Improvement Association (WIA) exists in this sparsely-populated area. This outcome-based project will: • Enhance nutrient and manure management to reduce agricultural inputs to the stream. • Assess the amount of human waste reaching the stream from Roselle. • Engage and inform local residents so a WIA can be formed. • Monitor performance through a rigorous water and soil testing program. This project embraces a concept of participation from all levels of government, commodity organizations, and the private sector. The largest drinking water utility in the state will lead and administer this effort. The participating parties will work to establish a functioning WIA so that progress achieved through this project will be robust and long-lasting. The participants believe this will be the most effective approach to correct the situation, and will serve as a model for other problem watersheds throughout the state.
Resumo:
The Rathbun Land and Water Alliance and partners have implemented a uniquely effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This project application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in four targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are: (1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs; (2) assistance for landowners to apply BMPs on 5,100 acres that will reduce the annual delivery of sediment by 8,130 tons and phosphorus by 35,980 pounds; (3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.
Resumo:
This project would target Norfolk Creek Subwatershed for land treatment practices. The Norfolk Creek Subwatershed is 14,035 acres located southwest of Waukon. The landscape is characterized by rugged karst topography and is marked with hundreds of sinkholes, providing direct drainage into the water table, affecting wells, springs, and community water sources. The surface groundwater runoff from this karst landscape eventually flows into the Yellow River. The potential point and non-point pollution sources are complicated and expensive to resolve. Extensive water quality monitoring has been completed on Norfolk Creek and has tested high in many parameters. We hope that with the upland treatment included in this grant request, terraces, grade stabilization structures, sediment control basins, and livestock manure management systems, these will improve. Continued water quality sampling will monitor this. This application has been reviewed and approved by the Allamakee County Soil and Water Conservation District Commissioners.
Resumo:
With the Saylor Creek Watershed Improvement Project, Iowa Heartland RC&D and other area stakeholders have an opportunity to display how "best management practices" (BMPs) can reduce storm water runoff and improve the quality of that runoff in an urban setting. Conservation design is a uew approach to storm water management that addresses the negative impacts of storm water runoff and turns them into a positive. The master plan for the Prairie Trail development surrounding the watershed project will incorporate bioretention cells, bioswales, buffer strips, rain gardens, as well as native plant landscaping to slow storm water runoff and naturally clean sediment out of the water before it reaches Saylor Creek. In addition to conservation design elements, the project will utilize storm water detention ponds and creek bed restoration to develop a complete storm water "treatment train" system within Prairie Trail. The extensive use of conservation storm water management for Prairie Trail is unique for urban development in Iowa.
Resumo:
Lower Coldwater and Palmer Creeks in Butler and Floyd counties are subwatersheds of the Cedar River, which provides drinking water to Cedar Rapids, IA. The increasing concentration of nitrate+nitrate in the river is of concern to the Cedar Rapids water utility, and IDNR snapshot monitoring shows Coldwater and Palmer to be significant potential sources (above the 90th percentile for subwatersheds monitored). Both creeks are also on the Iowa Section 303(d) list of impaired waters (aquatic life). Citizens of these predominantly agricultural watersheds organized the Coldwater-Palmer Watershed Improvement Association to deal proactively with nonpoint source pollutants from crop and livestock operations through a performance-based environmental management program. The locally-adapted program implemented by the Coldwater-Palmer watershed council rewards participants for environmental accomplishments - soil quality improvement and nutrient source reduction as measured by accepted, scientifically-based tests and models. Most of the locallyappropriate BMPs used to improve performance are undertaken voluntarily at participants' initiative. WIRB funds will be combined with funding from the Iowa Com Growers Association and significant in-kind support from the Cedar River Watershed Monitoring Coalition, Iowa State University Extension and other partners. The project will result in sustainable reduction in nutrient loading achieved with voluntary participation of a majority of watershed farm operators.
Resumo:
This watershed project will provide technical and financial assistance to improve surface and groundwater quality. This will be accomplished by installing an alternative tile outlet for 3 agricultural drainage wells (ADWs) and providing incentives to implement nutrient and pest management.