961 resultados para Water levels.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topography has been reported to be the major factor ruling the spatial distribution of Acrisols, Plinthosols and Gleysols on the seasonally flooded, low elevation plateaux of the upper Amazon basin occupied by Tertiary (Ica & Solimoes) sediments. In this study, detailed morphological and mineralogical investigations conducted in a representative 25-ha site were combined with hydro-geochemical data to relate the vertical and lateral soil differentiations observed to the hydro-geological history of that part of the basin. As a result of the uplift of the Andes, several cuts in the extensive Tertiary marshlands have formed, at first, slightly incised plateaux of low elevation. There, weathering under hot and humid climates would have generated a reddish, freely drained and bioturbated topsoil layer and the vertical differentiation in subsoil sediments of a plinthite over an iron-depleted mottled clay. The second episode of soil differentiation is linked to the replacement of the forest by a savannah under the drier climates of the late Pleistocene, which favours surface runoff and the infill of the incisions by fine particles. This infill, combined with the return to the present humid climate, has then enabled the local groundwater to rise on the plateaux and to generate episaturation at the topsoil/subsoil transition close to the depressions. Nowadays, ferrous iron is released from the partly iron-depleted topsoil weathering front at high water levels during the rainy seasons. It moves from footslope to low-lying positions and from top to bottom in the soil profile according to the groundwater dynamics. The present general trend is thus to the lateral export of iron at high water levels due to subsurface and overland flows, its vertical transfer during the recession of the groundwater and accumulation in a nodular plinthite. In the latter, ferrous iron is adsorbed onto its softest iron masses where it feeds the neoformation of ferrihydrite that rapidly dehydrates into haematite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to determine the influence of five different water levels on the crop development of Calla. The crop parameters evaluated were leaf area and evapotranspiration. The study was conducted in glass greenhouse with 50% of sunlight reduction. The plants were grown in PVC pots with 150 mm diameter, which were filled with substrate. The plant tubers weighed from 10 g to 12 g. The pots were placed within containers, under water level constant automatically.. The table water levels used were 10, 17, 24, 31 and 38 cm. Nine evaluations during the growth cycle checked the growth development. The evaporation varied from 26.89 to 46.14 L.plant-1 for 38 and 10 cm water levels, respectively and leaf area per plant showed 1011.6 to 2016.3 for the same levels. The substrate water was more available in the treatment 24 cm, with more restrictions in the upper and lower treatments. There was positive correlation between leaf area and evapotranspiration at the final of the culture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study had as its objective the assessment of the possible effects of hydric stress on the growth, physiological characteristics of two different genetic materials from Eucalyptus urograndis. The experiment was carried out in a greenhouse at Faculdade de Ciências Agronômicas of UNESP, campus Botucatu from March to July, 2005. The hydric management was established based on the soil water potential. Two water levels were established, doing the evapotranspired water replacement by pot weighing. Two clones were used, Eucalyptus urograndis 105 and 433, being the first one more resistant to the hydric deficit and the 433 more sensitive to stress. The study was made from a 2×2 factorial (two levels of water × two genetic materials). For the hydric management, the plants were irrigated when they reached a soil water potential of -0.03 MPa or -1.5 MPa. The assessments made were: diffusive water vapor of stomato, transpiration, leaf temperature and leaf water potential. The physiological evaluations throughout the day, in the end of the experiment. Treatments without hydric stress had a higher performance in all studied characteristics, but the clones had no influence. The stomatic resistance followed the potentials, showing higher values in the treatments submitted to hydric deficiency, more intensely for clone 433, being that this also happened with the leaf water potential. The transpiration also followed the leaf water potential and the stomatic resistance more intensely for clone 105 both comparing stressed plants and non-stressed plants. Consequently, the leaf temperatures had higher values for clone 433 on the stressed treatment. Thus, it can be concluded that there was a better performance in plants kept on a soil water potential of -0.03 MPa and a higher resistance to hydric stress for clone 105.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - This paper seeks to address the issue of persistent and widespread drought conditions during 2000 and 2001, which were the apparent cause of the decline of water levels in the reservoirs of Brazilian hydroelectric power plants. Design/methodology/approach - This issue is addressed here through a case study of the hydroclimatology of the Paraíba river basin, in Southeast Brazil, home to four large multi-purpose operational reservoirs. Findings - The data analysis shows that neither changes in the frequency nor magnitude of extreme hydrological events (droughts and floods) nor in annual rainfall amounts can be detected from the existing climate record. The explanation is consistent with the fact that the terrestrial water and energy cycles are tightly, and non-linearly, coupled through evapotranspiration. Research limitations/implications - Therefore small change in the seasonality of rainfall can have a significant impact on the basin's overall hydrologic regime, and thus on the availability of water resources. Originality/value - Often, adaptation and resilience to climate variability are discussed in the context of catastrophic events such as floods and droughts. This study suggests that a different type of impacts, those associated with subtle, yet persistent changes of seasonality in the terrestrial water cycle, cannot be ignored in studies of long-term sustainability of water resources. © Emerald Group Publishing Limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The availability of water for seeds is closely related to their germination, since hydration is a limiting factor for their metabolic processes. Therefore, in tests carried out in laboratory, substrate must be sufficiently moistened, in order to assure both the embryo growth and seedling formation. This research was carried out to evaluate the influence of different quantities of water, in different substrates, for cabbage (Brassica oleracea var. capitata) seeds germination. The seeds, processed with Thiran 0.1%, were obtained in shops located in Jaboticabal, São Paulo State, Brazil. Germination tests were made in germitest rolled paper towel substrates, between and on draft paper, moistened with quantities of water equivalent to 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; and 4.0 times the dry substrate weight. For each treatment, four repetitions of 50 seeds were used. The seeds were kept in a germinator, at an alternate temperature of 20-30°C, without further addition of water to the substrate. The evaluations were made on the fifth and tenth days after the experiment preparation. The results obtained revealed that the quantities of water ranging from 1.5 to 2.5 times the paper weight were favorable for seeds germination, mainly in the substrate on and between the paper, while water levels above 3.0 times the substrate weight were harmful for cabbage seeds germination in the rolled paper towel substrates and between the paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência Florestal - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA