901 resultados para Water in oil emulsion
Resumo:
Previous studies have shown that the bioturbating polychaete Hediste (Nereis) diversicolor can affect the composition of bacterial communities in oil-contaminated sediments, but have not considered diversity specifically within bioturbator burrows or the impact on microbial eukaryotes. We tested the hypothesis that H. diversicolor burrows harbour different eukaryotic and bacterial communities compared with un-bioturbated sediment, and that bioturbation stimulates oil degradation. Oil-contaminated sediment was incubated with or without H. diversicolor for 30 days, after which sediment un-affected by H. diversicolor and burrow DNA/RNA samples were analysed using quantitative reverse transcription PCR (Q-RT-PCR) and high-throughput sequencing. Fungi dominated both burrow and un-bioturbated sediment sequence libraries; however, there was significant enrichment of bacterivorous protists and nematodes in the burrows. There were also significant differences between the bacterial communities in burrows compared with un-bioturbated sediment. Increased activity and relative abundance of aerobic hydrocarbon-degrading bacteria in the burrows coincided with the significant reduction in hydrocarbon concentration in the bioturbated sediment. This study represents the first detailed assessment of the effect of bioturbation on total microbial communities in oil-contaminated sediments. In addition, it further shows that bioturbation is a significant factor in determining microbial diversity within polluted sediments and plays an important role in stimulating bioremediation.
Resumo:
Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.
Resumo:
A detailed theoretical analysis has been carried out to study efficient heating due to microwaves for one-dimensional (1D) oil–water emulsion samples placed on various ceramic, metallic (reflective) and ceramic–metallic composite supports. Two typical emulsion systems are considered such as oil-in-water (o/w) and water-in-oil (w/o). A preliminary study has been carried out via average power vs emulsion thickness diagram to estimate microwave power absorption within emulsion samples for various cases. The maxima in average power, also termed as ‘resonances’, are observed for specific emulsion thicknesses and the two consecutive resonances of significant magnitudes are termed as R1 and R2 modes. For both o/w and w/o emulsions, it is observed that microwave power absorption is enhanced in presence of metallic and composite supports during both R1 and R2 modes. The efficient heating strategies characterized by ‘large heating rates’ with ‘minimal thermal runaway’ i.e. uniform temperature distributions within the sample have been assessed for each type of emulsion. Based on the detailed spatial distributions of power and temperature for various cases, SiC-metallic composite support may be recommended as an optimal heating strategy for o/w samples with higher oil fractions (0.45) whereas metallic and Alumina-metallic composite supports may be favored for samples with smaller oil fractions (=0.3) during R1 mode. For w/o samples, SiC-metallic composite support may be suitable heating strategy for all ranges of water fractions during R1 mode. During R2 mode, metallic and Alumina-metallic composite supports are favored for both o/w and w/o emulsion samples. Current study recommends the efficient way to use microwaves in a single mode waveguide and the heating strategy can be suitably extended for heating of any other emulsions for which dielectric properties are easily measurable or available in the literature.