969 resultados para Water barrier properties
Resumo:
The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
Resumo:
Dinoflagellate cysts were recovered throughout the Paleogene succession of Hole 647A, which contains an almost complete deep-water record of early Eocene through early late Oligocene sedimentation in the Labrador Sea. Dinoflagellate cyst biostratigraphy is in general accord with that provided by other microfossil groups and is consistent with a lower Eocene age, as determined by nannofossils, for basal sediments in Hole 647A. These sediments overlie oceanic crust of Chron 24 age. Dinocyst assemblages indicate outer neritic to oceanic conditions throughout, although the persistent occurrence of Wetzeliellaceae specimens in the lower Eocene suggests a greater influence from shelf environments during this time. Lower Eocene dinocyst assemblages are similar to coeval assemblages from the Rockall Plateau, but those from the middle to upper Eocene have mixed affinities and may be related to the intensification of the proto-Gulf Stream from middle Eocene time. Oligocene dinocyst assemblages suggest the influence of both arctic and North Atlantic wate rmasses at this site. The presence of protoperidineacean species in the upper Eocene and Oligocene may indicate increased availability of nutrients, perhaps related to increased upwelling or the effects of water-mass mixing. Productive samples are dominated by dinocysts and acritarchs, while sporomorphs are represented mainly by bisaccate pollen. Preservational differences within samples may reflect mixing of penecontemporaneous dinocyst populations during the Eocene, and all samples examined may have a considerable allochthonous component. Variability in relative abundance of many species during the Eocene may be related to fluctuating water-mass properties. A total 175 dinocyst and acritarch taxa were recorded from 53 productive samples from the Paleogene. Only one Paleogene sample was barren of palynomorphs. Of three Miocene samples processed, all were barren.
Resumo:
The interval of time represented by marine isotope stages 11 and 12 (~360-470 ka) contains what may be the most extreme glacial and interglacial climate conditions of the Late Pleistocene. It has been suggested that sea level rose by ~160 m at the termination of glacial stage 12. This is 30% greater than the sea level rise that followed the most recent glacial maximum. There have been few detailed studies of the unique conditions that existed during the stage 11-12 time period because of the lack of high-quality core material. This problem has been addressed by the collection of high deposition rate cores from sediment drifts in the western North Atlantic during Ocean Drilling Project Leg 172. Benthic foraminiferal d13C data from cores collected between ~4600 and 1800 m were used to reconstruct bathymetric gradients in deep and intermediate water properties for selected time slices during this glacial-interglacial cycle. During glacial stage 12, the deep western North Atlantic was filled by a water mass that was more nutrient-enriched than modern Antarctic Bottom Water. Above 2000 m, a more nutrient-depleted water mass existed during this glacial stage. Such an intermediate water mass has been described for more recent glacial periods and presumably forms in a more proximate region of the North Atlantic. Interglacial stage 11 water mass properties closely resemble those of the present-day western North Atlantic. A nutrient-depleted water mass (d13C of 0.75-1.0 per mil), similar to modern North Atlantic Deep Water existed between 3500 and 2000 m. This was underlain by a water mass with lower d13C values (<0.75 per mil) that probably was derived from a southern source. Using Leg 172 data, along with previously published results from the Atlantic and Pacific oceans, we estimate a mean global d13C change of 0.95 per mil from stage 12 to stage 11. This is twice the whole ocean ?13C change reported for the transition from the last glacial maximum to the Holocene.
Resumo:
Pluri-annual proxy records of marine sediment cores from the Tagus Prodelta off Lisbon, Portugal, have been generated to gain insight into the climatic and hydrographic changes in the area during the twentieth century. The study includes benthic and planktonic foraminiferal faunas and the stable isotopic composition of one benthic (Uvigerina celtica) and two planktonic (Globigerina bulloides and Globorotalia inflata) foraminiferal species. Sea bottom and surface water temperatures were estimated based on the d18O values of these species and compared with instrumental data. The foraminiferal fauna and the isotope-based temperature record indicate increasing temperatures throughout the last century. The immigration of a new species, Saidovina karreriana, to the area around 100 years ago indicates changes in the trophic conditions and water mass properties, which are probably at least partly due to anthropogenic pollution.
Resumo:
Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats revealed that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 4°N to 22°N, from the shelf at the eastern boundary to 38°W). Minimum oxygen concentrations of about 9 µmol kg-1 in CEs and severely suboxic concentrations (< 1 µmol kg-1) in ACMEs were observed. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg-1 could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs) over a period of 10 years. The eddies' oxygen minimum is located in the eddy core beneath the mixed layer at a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly between 50 and 150 m depth for CEs (ACMEs) is -38 (-79) µmol kg-1. The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the eddies' surface waters and the isolation of their cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The locally increased consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. Water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary.
Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid
Resumo:
Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.
Resumo:
The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important influence of the nano-biocomposites morphology on their final properties. In particular, the rheological and viscoelastic characteristics of these systems are very sensitive to the dispersion level of the nanofiller, but it is possible to assess that the material processing behaviour is not compromised by the presence of these nano-reinforcements. In general, both nanofillers had a positive influence in the materials final properties. Mechanical performance shows improvements in terms of elastic modulus, without important limitations in terms of ductility. Thermal properties are improved in terms of residual mass after degradation and low improvements are also observed in terms of oxygen barrier properties.
Resumo:
Ocean circulation may have undergone reductions and reinvigorations in the past closely tied to regional climate changes. Measurements of 231Pa/230Th ratios in a sediment core from the Bermuda Rise have been interpreted as evidence that the Atlantic Meridional Overturning Circulation (AMOC) was weakened or completely eliminated during a period of catastrophic iceberg discharges (Heinrich-Event 1, H1). Here we present new data from the Bermuda Rise that show further 231Pa/230Th peaks during Heinrich-2 (H2) and Heinrich-3 (H3). Additionally, a tight correlation between diatom abundances (biogenic silica) and 231Pa/230Th is discovered in this core. Our results redirect the interpretation of 231Pa/230Th from the Bermuda Rise as a proxy for ocean circulation towards a proxy that reacts highly sensitive to changes of particle composition and water mass properties.
Resumo:
Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; d18O, d13C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.
Resumo:
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Resumo:
Titanium nitride (TiN) thin films are coated on HT-9 and MA957 fuel cladding tubes and bars to explore their mechanical strength, thermal stability, diffusion barrier properties, and thermal conductivity properties. The ultimate goal is to implement TiN as an effective diffusion barrier to prevent the inter-diffusion between the nuclear fuel and the cladding material, and thus lead to a longer lifetime of the cladding tubes. Mechanical tests including hardness and scratch tests for the samples before and after thermal cycle tests show that the films have a high hardness of 28GPa and excellent adhesion properties despite the thermal treatment. Thermal conductivity measurements demonstrate that the thin TiN films have very minimal impact on the overall thermal conductivity of the MA957 and HT-9 substrates, i.e., the thermal conductivity of the uncoated HT-9 and MA957 substrates was 26.25 and 28.44 W m-1 K-1, and that of the coated ones was 26.21 and 28.38W m-1 K-1, respectively. A preliminary Ce diffusion test on the couple of Ce/TiN/HT-9 suggests that TiN has excellent material compatibility and good diffusion barrier properties.
Resumo:
Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.
Resumo:
Tree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2–1.6 cm/s) versus the dry season (0.8–1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island’s head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5–1.5 mg/L) at all study sites and were primarily of organic origin. The mean particle size of the suspended sediments was 3 μm with a distribution that was exponential. Critical velocities needed to cause re-suspension of these particles were estimated to be above the actual velocities observed. Sediment transport within the water column appears to be at a near steady state during the conditions evaluated with low rates of sediment loss balanced by presumably the release of equivalent quantities of particles of organic origin. Existing hydrologic conditions do not appear to transport sufficient suspended sediments to result in the formation of tree islands. Of interest would be to collect hydrologic and sediment transport data during extreme hydrologic events to determine if enough sediment is transported under these conditions to promote sufficient sediment accumulations.
Resumo:
Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation to the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here, we report measurements of methanotrophic activity and biomass (CARD-FISH) at methane seeps west of Svalbard, and related them to physical water mass properties (CTD) and modelled current dynamics. We show that cold bottom water containing a large number of aerobic methanotrophs was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current, constitutes a rapid oceanographic switch severely reducing methanotrophic activity in the water column. Strong and fluctuating currents are widespread oceanographic features common at many methane seep systems and are thus likely to globally affect methane oxidation in the ocean water column.