992 resultados para Volcanic-Rocks


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of intensely altered, dark xenoliths with palimpsest quench textures were recorded within altered dacitic host rocks at Site 1189 (Roman Ruins, PACMANUS) during Ocean Drilling Program (ODP) Leg 193. Several of these displayed puzzling marginal fringes, apparently of altered plagioclase with variolitic texture, protruding into adjacent host rocks. Despite their alteration, the xenoliths were interpreted as fragments of rapidly chilled, possibly olivine-bearing basalts incorporated into the dacitic magmas either within the crustal plumbing system or during eruption at the seafloor (figures F15, F16, F17, F42, and F43 in Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.193.104.2002). An additional example of formerly spinifex-textured xenolith, the first from Site 1188 (Snowcap) and the first from the upper cristobalite-bearing zone of alteration, has been revealed by postcruise studies. Furthermore, a pristine sample of the parent lithology has been found within a dredge haul (MD-138, Binatang-2000 Cruise of Franklin; 3°43.60'S, 151°40.35'E, 1688 meters below sea level) from the Satanic Mills hydrothermal field at PACMANUS, near ODP Site 1191. The purpose of this report is to document these discoveries and thereby to confirm and build on shipboard interpretations. To my knowledge, similar xenoliths have never before been found in modern island arc or backarc volcanic sequences. Spinifex textures are most common in Archean komatiites, some of which are bimodally associated with calc-alkaline felsic volcanic rocks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analyses of the isotopic composition of Pb in (1) western Pacific Ocean sediments [Jurassic(?) to Pleistocene in age, including clays and biogenic oozes], (2) Pacific Ocean basaltic rocks, (3) Mariana frontal arc volcanic rocks (Eocene to Miocene), and (4) Mariana active arc volcanic rocks [Pliocene (?) to Holocene] indicate that Pacific Ocean sediments could not have been a significant component of the source material for the Mariana arc volcanic rocks. Calculations involving the average concentrations and isotopic compositions of Pb in oceanic sediments, sea-floor basaltic rocks, and the Mariana arc volcanic rocks suggest that the sediment component must have been less than 1 percent of this source material. The Pb isotopic compositions of the Mariana arc volcanic rocks lie, within experimental error, along the trend of available Pacific Ocean basalt analyses in versus 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams. Isotopic analyses of Pb in Pacific Ocean sediments do not lie along this trend; they have higher 207Pb/204Pb and 208Pb/204Pb values for comparable 206Pb/204Pb ratios. Clayey sediments generally have higher 208Pb/204Pb and 207Pb/204Pb ratios than biogenic oozes regardless of the age of the sediment. Comparison of combined Sr and Pb isotopic analyses for (1) mantle-derived materials erupted through oceanic crust, (2) altered ocean-floor basaltic rocks, and (3) volcanic rocks from oceanic island arcs suggests that the Mariana arc volcanic rocks were derived, at least in part, from altered Pacific lithosphere subducted beneath the Mariana arc. Unaltered basalts from the Mariana inter-arc basin (Mariana Trough) have Pb and Sr isotopic compositions that are very similar to those reported for some Hawaiian volcanic rocks but distinct from Mariana active and frontal arc compositions. These observations, in addition to existing major-and trace-element data, support a mantle origin for the interarc basin volcanic rocks. Dacites dredged from the Mariana remnant arc (South Honshu Ridge) have Pb isotopic compositions that are within experimental error of the active-arc analyses, consistent with a genetic relation.