907 resultados para Visual Speaker Recognition, Visual Speech Recognition, Cascading Appearance-Based Features


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verification: Application task of EVALITA 2009. This competitive submission consisted of a score-level fusion of three component systems; a joint-factor analysis GMM system and two SVM systems using GLDS and GMM supervector kernels. Development evaluation and post-submission results are presented in this study, demonstrating the effectiveness of this fused system approach. This study highlights the challenges associated with system calibration from limited development data and that mismatch between training and testing conditions continues to be a major source of error in speaker verification technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speaker diarization determines instances of the same speaker within a recording. Extending this task to a collection of recordings for linking together segments spoken by a unique speaker requires speaker linking. In this paper we propose a speaker linking system using linkage clustering and state-of-the-art speaker recognition techniques. We evaluate our approach against two baseline linking systems using agglomerative cluster merging (AC) and agglomerative clustering with model retraining (ACR). We demonstrate that our linking method, using complete-linkage clustering, provides a relative improvement of 20% and 29% in attribution error rate (AER), over the AC and ACR systems, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial expression recognition (FER) has been dramatically developed in recent years, thanks to the advancements in related fields, especially machine learning, image processing and human recognition. Accordingly, the impact and potential usage of automatic FER have been growing in a wide range of applications, including human-computer interaction, robot control and driver state surveillance. However, to date, robust recognition of facial expressions from images and videos is still a challenging task due to the difficulty in accurately extracting the useful emotional features. These features are often represented in different forms, such as static, dynamic, point-based geometric or region-based appearance. Facial movement features, which include feature position and shape changes, are generally caused by the movements of facial elements and muscles during the course of emotional expression. The facial elements, especially key elements, will constantly change their positions when subjects are expressing emotions. As a consequence, the same feature in different images usually has different positions. In some cases, the shape of the feature may also be distorted due to the subtle facial muscle movements. Therefore, for any feature representing a certain emotion, the geometric-based position and appearance-based shape normally changes from one image to another image in image databases, as well as in videos. This kind of movement features represents a rich pool of both static and dynamic characteristics of expressions, which playa critical role for FER. The vast majority of the past work on FER does not take the dynamics of facial expressions into account. Some efforts have been made on capturing and utilizing facial movement features, and almost all of them are static based. These efforts try to adopt either geometric features of the tracked facial points, or appearance difference between holistic facial regions in consequent frames or texture and motion changes in loca- facial regions. Although achieved promising results, these approaches often require accurate location and tracking of facial points, which remains problematic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.