969 resultados para Viral Replication


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The international response to SARS-CoV has produced an outstanding number of protein structures in a very short time. This review summarizes the findings of functional and structural studies including those derived from cryoelectron microscopy, small angle X-ray scattering, NMR spectroscopy, and X-ray crystallography, and incorporates bioinformatics predictions where no structural data is available. Structures that shed light on the function and biological roles of the proteins in viral replication and pathogenesis are highlighted. The high percentage of novel protein folds identified among SARS-CoV proteins is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method and oligonucleotide compound for inhibiting replication of a nidovirus in virus-infected animal cells are disclosed. The compound (i) has a nuclease-resistant backbone, (ii) is capable of uptake by the infected cells, (iii) contains between 8-25 nucleotide bases, and (iv) has a sequence capable of disrupting base pairing between the transcriptional regulatory sequences in the 5′ leader region of the positive-strand viral genome and negative-strand 3′ subgenomic region. In practicing the method, infected cells are exposed to the compound in an amount effective to inhibit viral replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If we use the analogy of a virus as a living entity, then the replicative organelle is the body where its metabolic and reproductive activities are concentrated. Recent studies have illuminated the intricately complex replicative organelles of coronaviruses, a group that includes the largest known RNA virus genomes. This review takes a virus-centric look at the coronavirus replication transcription complex organelle in the context of the wider world of positive sense RNA viruses, examining how the mechanisms of protein expression and function act to produce the factories that power the viral replication cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIVmac251 challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIVmac251 stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pol protein of human immunodeficiency virus type 1 (HIV-1) harbours the viral enzymes critical for viral replication; protease (PR), reverse transcriptase (RT), and integrase (IN). PR, RT and IN are not functional in their monomeric forms and must come together as either dimers (PR), heterodimers (RT) or tetramers (IN) to be catalytically active. Our knowledge of the tertiary structures of the functional enzymes is well advanced, and substantial progress has recently been made towards understanding the precise steps leading from Pol protein synthesis through viral assembly to the release of active viral enzymes. This review will summarise our current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion and discuss the maturation process that results in the release of the viral enzymes in their active forms. Our discussion will focus on the relationship between structure and function for each of the viral enzymes. This review will also provide an overview of the current status of inhibitors against the HIV-1 Pol proteins. Effective inhibitors of PR and RT are well established and we will discuss the next generation inhibitors of these enzymes as well recent investigations that have highlighted the potential of IN and RNase H as antiretroviral targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been assumed that R5 and X4 HIV utilize similar strategies to support viral cDNA synthesis post viral entry. In this study, we provide evidence to show that R5 and X4 HIV have distinct requirements for host cell uracil DNA glycosylase (UNG2) during the early stage of infection. UNG2 has been previously implicated in HIV infection, but its precise role remains controversial. In this study we show that, although UNG2 is highly expressed in different cell lines, UNG2 levels are low in the natural host cells of HIV. Short interfering RNA knockdown of endogenous UNG2 in primary cells showed that UNG2 is required for R5 but not X4 HIV infection and that this requirement is bypassed when HIV enters the target cell via vesicular stomatitis virus envelope-glycoprotein-mediated endocytosis. We also show that short interfering RNA knockdown of UNG2 in virus-producing primary cells leads to defective R5 HIV virions that are unable to complete viral cDNA synthesis. Quantitative PCR analysis revealed that endogenous UNG2 levels are transiently up-regulated post HIV infection, and this increase in UNG2 mRNA is ∼10–20 times higher in R5 versus X4 HIV-infected cells. Our data show that both virion-associated UNG2 and HIV infection-induced UNG2 expression are critical for reverse transcription during R5 but not X4 HIV infection. More importantly, we have made the novel observation that R5 and X4 HIV have distinct host cell factor requirements and differential capacities to induce gene expression during the early stages of infection. These differences may result from activation of distinct signaling cascades and/or infection of divergent T-lymphocyte subpopulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb). Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/ or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and Cterminal segments of gp120 and the disulfide-bonded region (DSR) of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D) with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn136 in V1 (T138N mutation) in
conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N139INN sequence, which ablates the overlapping Asn141-Asn142-Ser-Ser potential N-linked glycosylation sequons in
V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu593, Trp596 and Lys601. The 136 and/or 142
glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-
gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan shield in a setting of NAb selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manifestations of viral infections can differ between women and men, and marked sex differences have been described in the course of HIV-1 disease. HIV-1-infected women tend to have lower viral loads early in HIV-1 infection but progress faster to AIDS for a given viral load than men. Here we show substantial sex differences in the response of plasmacytoid dendritic cells (pDCs) to HIV-1. pDCs derived from women produce markedly more interferon-alpha (IFN-alpha) in response to HIV-1-encoded Toll-like receptor 7 (TLR7) ligands than pDCs derived from men, resulting in stronger secondary activation of CD8(+) T cells. In line with these in vitro studies, treatment-naive women chronically infected with HIV-1 had considerably higher levels of CD8(+) T cell activation than men after adjusting for viral load. These data show that sex differences in TLR-mediated activation of pDCs may account for higher immune activation in women compared to men at a given HIV-1 viral load and provide a mechanism by which the same level of viral replication might result in faster HIV-1 disease progression in women compared to men. Modulation of the TLR7 pathway in pDCs may therefore represent a new approach to reduce HIV-1-associated pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV undergoes high rates of mutation and recombination during reverse transcription, but it is not known whether these events occur independently or are linked mechanistically. Here we used a system of silent marker mutations in HIV and a single round of infection in primary T lymphocytes combined with a high-throughput sequencing and mathematical modeling approach to directly estimate the viral recombination and mutation rates. From >7 million nucleotides (nt) of sequences from HIV infection, we observed 4,801 recombination events and 859 substitution mutations (≈1.51 and 0.12 events per 1,000 nt, respectively). We used experimental controls to account for PCR-induced and transfection-induced recombination and sequencing error. We found that the single-cycle virus-induced mutation rate is 4.6 × 10(-5) mutations per nt after correction. By sorting of our data into recombined and nonrecombined sequences, we found a significantly higher mutation rate in recombined regions (P = 0.003 by Fisher's exact test). We used a permutation approach to eliminate a number of potential confounding factors and confirm that mutation occurs around the site of recombination and is not simply colocated in the genome. By comparing mutation rates in recombined and nonrecombined regions, we found that recombination-associated mutations account for 15 to 20% of all mutations occurring during reverse transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advent of highly active antiretroviral therapy (HAART), since 1996, represented a profound impact on the natural history of HIV-infection by promoting important and sustainable viral replication suppression and increasing survival and quality of life among seropositive patients. Nonetheless, antiretroviral therapy has been observed to be accompanied by metabolic alterations such as dyslipidemia, especially hypertriglyceridemia, insulin resistance, hyperglycemia and lipodystrophy (body fat redistribution). Epidemiological studies have demonstrated a correlation between high triglyceride (TG) levels and higher incidence of coronary artery disease (CAD). Some investigators suggest dietary intervention as part of hyperlipidemia treatment, including an increase in soluble fiber intake (10-25g/day). Whereas some studies have demonstrated that both cholesterol and serum triglyceride levels decrease with the use of food fiber, others have shown just a serum triglyceride decrease, and others failed to observe any alteration in lipid metabolism. The purpose of this study was to assess the effect of soluble fiber (R) (partially hydrolyzed guar gum) supplementation on hypertriglyceridemia and immune profile in HIVpositive individuals on HAART. Nineteen HIV-positive individuals with hypertriglyceridemia (serum levels >= 150 to < 500mg/dl) were studied. of these individuals, 63.16% were males and 36.84% females, with mean age of 43.52 +/- 9.22 years. These individuals had been on the same HAART regimen for at least six months, had no change in therapy during the study and received 20g/day of soluble fiber for four months at pre-established times. Clinical-nutritional, biochemical (total proteins, albumin, globulin, total cholesterol, LDL-c, HDL-c, TG, TG/HDL-c and LDLc/HDL-c), hematimetric (hemoglobin, hematocrit and total lymphocytes), and immunologic (lymphocytes T CD4(+), T CD8(+); T CD4(+)/CD8(+) ratio, viral load, TNF-alpha and IL-6) parameters were assessed in all patients at three time points (M0: pretreatment, M1: 30 days, and M2: four months after intervention). Significance level was set at 5% for all data statistically analyzed. Serum TG and TG/HDL-c ratio reduction was observed at all time points, but statistical significance was found just at M0 and M2. The remaining biochemical, hematimetric and immunologic parameters (lymphocytes T CD4(+), T CD8(+); T CD4(+)/ CD8(+) ratio, and viral load) showed no significant difference at all times. Regarding serum cytokines, TNF-alpha and IL-6 significantly decreased between M0 and M2, and only IL-6 reduced between M1 and M2. The data collected show that dietary and anthropometric parameters remained unchanged excluding potential confounding factors related with the effect of fiber supplementation on serum TG, TNF-alpha and IL-6. Thus, soluble fiber (R) contributed to an important reduction in hypertriglyceridemia and in the serum levels of the proinflammatory cytokines TNF-alpha and IL-6 in HIV-seropositive individuals on HAART. In addition, soluble fiber (R) might have minimized the process of atherosclerosis in these individuals, given that elevated serum levels of TG, TNF-alpha and IL-6 have been associated with the development of these lesions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combination Antiretroviral Therapy (cART) aims to inhibit viral replication, delay immunodeficiency progression and improve survival in AIDS patients. The objective of this study was to compare two different schemes of cART, based on plasma viral load (VL) and CD4+ T lymphocyte count, during 48 weeks of treatment. For this purpose, 472 medical charts of a Specialized Outpatient Service were reviewed from 1998 to 2005. Out of these, 58 AIDS patients who had received a triple drug scheme as the initial treatment were included in the study and two groups were formed: Group 1 (G1): 47 individuals treated with two nucleoside reverse-transcriptase inhibitors (NRTI) and one non-nucleoside reverse-transcriptase inhibitor; Group 2 (G2): 11 patients treated with two NRTI and one protease inhibitor. In G1 and G2, 53.2% and 81.8% respectively were patients with an AIDS-defining disease. The T CD4+ lymphocyte count increased progressively up until the 24th week of treatment in all patients, while VL became undetectable in 68.1% of G1 and in 63.6% of G2. The study concluded that the evolutions of laboratory tests were similar in the two treatment groups and that both presented a favorable clinical evolution.