921 resultados para Vinyl chloride
Resumo:
This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.
Resumo:
This paper presents an experimental study to evaluate the influence of coarse lightweight aggregate (LWA), fine LWA and the quality of the paste matrix on water absorption and permeability, and resistance to chloride-ion penetration in concrete. The results indicate that incorporation of pre-soaked coarse LWA in concrete increases water sorptivity and permeability slightly compared to normal weight concrete (NWC) of similar water-to-cementitious materials ratio (w/cm). Furthermore, resistance of the sand lightweight concrete (LWC) to water permeability and chloride-ion penetration decreases with an increase in porosity of the coarse LWA. The use of fine LWA including a crushed fraction <1.18 mm reduced resistance of the all-LWC to water and chloride-ion penetration compared with the sand-LWC which has the same coarse LWA. Overall, the quality of the paste matrix was dominant in controlling the transport properties of the concrete, regardless of porosity of the aggregates used. With low w/cm and silica fume, low unit weight LWC (_1300 kg/m3) was produced with a higher resistance to water and chloride-ion penetration compared with NWC and LWC of higher unit weights.
Resumo:
This paper presents an experimental study on the resistance of lightweight aggregate concretes to chloride-ion penetration in comparison to that of normal weight concrete of similar w/c. Salt ponding test (based on AASHTO T 259), rapid chloride permeability test (ASTM C 1202) and rapid migration test (NT Build 492) were carried out to evaluate the concrete resistance to the chloride-ion penetration. Results indicate that in general the resistance of the LWAC to the chloride-ion penetration was in the same order as that of NWAC of similar w/c. However, the increase in cumulative LWA volume and the incorporation of finer LWA particles led to higher charge passed, migration coefficient, and diffusion coefficient. Since the LWACs had lower 28-day compressive strength compared with that of the NWAC of similar w/c, the LWACs may have equal or better resistance to the chloride-ion penetration compared with the NWAC of equivalent strength. The trend of the resistance of concretes to chloride-ion penetration determined by the three test methods was reasonably consistent although there were some discrepancies due to different test methods.
Resumo:
To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.
Resumo:
Durability is a significant issue to focus on for newly developed structural lightweight cement composite (ULCC). This paper presents an experimental study to evaluate the resistance of ULCC to water and chloride ion penetration. Chloride penetrability and sorptivity were evaluated for ULCC (unit weight about 1450 kg/m3) and compared with those of a normal weight concrete (NWC), a lightweight aggregate concrete (LWC), and an ultra lightweight composite with proprietary cementitious binder (DB) (unit weight about 1450 kg/m3) at similar compressive strength of about 60 MPa. Rapid chloride penetrability test, rapid migration test, water absorption (sorptivity) test, and water permeability test were conducted on these mixtures. Results indicate that ULCC and DB had comparable performance. Compared with control LWC and NWC at similar strength level, the ULCC and DB mixtures had higher resistance to chloride ion penetration, lower water absorption and virtually impermeable to water penetration.
Resumo:
This paper presents an experimental study to evaluate the effect of coarse and fine LWA in concrete on its water absorption and permeability, and resistance to chloride-ion penetration. In additions, LWC with lower unit weight of about 1300 kg/m3 but high resistance to water and chloride-ion penetration was developed and evaluated. The results indicate that the incorporation of coarse LWA in concrete increases water sorptivity and permeability slightly compared to NWC of similar w/c. The resistance of the sand-LWC to chloride-ion penetration depends on porosity of the coarse LWA. Fine LWA has more influence on the transport proper-ties of concrete than coarse LWA. Use of lightweight crushed sand <1.18 mm reduced the resistance of the LWC to water and chloride-ion penetration to some extent. With low w/cm and silica fume, low unit weight LWC (~1300 kg/m3) was produced with higher resistance to water and chloride ion penetration compared with concretes of higher unit weights.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
Dichloromethane (DCM) is thought to be metabolized in vivo by two independent pathways: a glutathione (GSH) dependent pathway that yields CO2 and a cytochrome P-450 mediated one that yields both CO and CO2 (Gargas et al 1986). With a physiologically based pharmacokinetic (PB-PK) model, Andersen et al (1987) calculate the quantitative parameters for both metabolic pathways. Using the kinetic parameters thus obtained and the results of two carcinogenicity studies with rodents (Serota et al 1986; NTP 1985), the authors then estimate the tumour risk for humans.
Resumo:
Methylene chloride (dichloromethane) is widely used as a solvent for stripping of paint, as industrial cleaning agent, for coating of pills in the pharmaceutical industry, and in the decaffeination of coffee. There is “sufficient evidence for the carcinogenicity” of methylene chloride in animals and “inadequate evidence for its carcinogenity in humans”, according to IARC (IARC 1987; CEC 1990).
Resumo:
Glutathione transferase (GST) GSTT1-1 is involved in the biotransformation of several chemicals widely used in industry, such as butadiene and dichloro methane DCM. The polymorphic hGSTT1-1 may well play a role in the development of kidney tumours after high and long-term occupational exposure against trichloroethylene. Although several studies have investigated the association of this polymorphism with malignant diseases little is known about its enzyme activity in potential extrahepatic target tissues. The known theta-specific substrates methyl chloride (MC) dichloromethane and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) were used to assay GSTT1-1 activity in liver and kidney of rats, mice, hamsters and humans differentiating the three phenotypes (non-conjugators, low conjugators, high conjugators) seen in humans. In addition GSTT1-1 activity towards MC and DCM was determined in human erythrocytes. No GSTT1-1 activity was found in any tissue of non-conjugators (NC). In all organs high conjugators (HC) showed twofold higher activity towards MC and DCM than low conjugators (LC). The activity in human samples towards EPNP was too close to the detection limit to differentiate between the three conjugator phenotypes. GSTT1-1 activity towards MC was two to seven-times higher in liver cytosol than in kidney cytosol. The relation for MC between species was identical in both organs: mouse > HC > rat > LC > hamster > NC. In rats, mice and hamsters GSTT1-1 activity in liver cytosol towards DCM was also two to seven-times higher than in the kidney cytosol. In humans this activity was twice as high in kidney cytosol than in liver cytosol. The relation between species was mouse > rat > HC > LC > hamster > NC for liver, but mouse > HC > LC/rat > hamster/NC for kidney cytosol. The importance to heed the specific environment at potential target sites in risk assessment is emphasized by these results.
Resumo:
The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.
Resumo:
This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.
Resumo:
Poly( ethylene oxide), poly(vinyl alcohol): and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water p-resent in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics.
Resumo:
PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.
Resumo:
This article deals with the kinetics and mechanism of acrylonitrile (AN) polymerization initiated by Cu(II)-4-anilino 3-pentene 2-one[Cu(II)ANIPO], Cu(II)-4-p-toluedeno 3-pentene 2-one [Cu(II)TPO], and Cu(II)-4-p-nitroanilino 3-pentene 2-one [Cu(II)NAPO] in bulk at 60°C. The polymerization is free radical in nature. The exponent of initiator(I) is 0.5. The initiation step is a complex formation between the chelate and monomer and subsequent decomposition of the intermediate complex giving rise to free radical and Cu(I). This is substantiated by ultraviolet (UV) and electron spin resonance (ESR) studies. The activation energies and kinetic and chain transfer constants have also been evaluated.