995 resultados para Villancicos to Saint Peter Nolasco
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about mesoscale features related to the sampling date, time and location. Includes calculated averages of mesaurements made concurrently at the sampling location and depth, and calculated averages from climatologies (AMODIS, VGPM) and satellite products.
Resumo:
Delta18O values of pore waters from the northern Barbados accretionary prism range from -0.3 to -3.6? and reflect pervasive reaction of volcanic ash to form smectite within the sedimentary sequence and continued low temperature alteration of basalt in the underlying ocean crust with the overprint of diffusive exchange between water in the sediment pores and the open ocean. Delta D values of pore waters in sediments sampled seaward of the deformation front drop from +5? at the sediment surface to -6? at the deepest levels sampled. These changes may also be related to alteration processes but remain largely enigmatic. Sediment deformation caused by impingement of the Caribbean plate on the Atlantic plate has instigated migration of chemically and isotopically distinct fluid along faults and coarse-grained sedimentary beds; delta18O values of pore waters are also locally affected by thrust stacking which increases diffusive pathlengths and possibly modifies diagenetic reaction rates in Pleistocene sediments. Migrating fluids are distinguished by anomalous delta18O values that are as much as 1? higher than those of surrounding fluids. Uncertainties in hydrogen isotope fractionation resulting from processes occurring under these conditions hinder identification of the hydrogen isotope composition of expelled fluid. Stable isotope analyses of pore waters help constrain the fluid migration history of the accretionary prism by limiting the source of fluids, the paths along which fluid flows, and the timing of faulting and subsequent fluid flow.
Resumo:
Comparison of rates of accumulation of organic carbon in surface marine sediments from the central North Pacific, the continental margins off northwest Africa, northwest and southwest America, the Argentine Basin, and the western Baltic Sea with primary production rates suggests that the fraction of primary produced organic carbon preserved in the sediments is universally related to the bulk sedimentation rate. Accordingly, less than 0.01% of the primary production becomes fossilized in slowly accumulating pelagic sediments [(2 to 6 mm (1000 y)**-1] of the Central Pacific, 0.1 to 2% in moderately rapidly accumulating [2 to 13 cm (1000 y)**-1] hemipelagic sediments off northwest Africa, northwest America (Oregon) and southeast America (Argentina), and 11 to 18% in rapidly accumulating [66 to 140 cm (1000 y)**-1] hemipelagic sediments off southwest America (Peru) and in the Baltic Sea. The emiprical expression: %Org-C = (0.0030*R*S**0.30)/(ps(1-Theta)) implies that the sedimentary organic carbon content (% Org-C) doubles with each 10-fold increase in sedimentation rate (S), assuming that other factors remain constant; i.e., primary production (R), porosity and sediment density (ps). This expression also predicts the sedimentary organic carbon content from the primary production rate, sedimentation rate, dry density of solids, and their porosity; it may be used to estimate paleoproductivity as well. Applying this relationship to a sediment core from the continental rise off northwest Africa (Spanish Sahara) suggests that productivity there during interglacial oxygen isotope stages 1 and 5 was about the same as today but was higher by a factor of 2 to 3 during glacial stages 2, 3, and 6.
Resumo:
The stratigraphic distribution, assemblage content, paleoecology and age of foraminifera recovered in fourteen of sixteen samples from the 5.63 m thick CRP-2 (Lithostratigraphic Unit 2.2) are discussed. LSU 2.2 comprises four discrete lithologic beds. The upward sequence is informally referred to as the lower sand bed, diamicton bed, middle sand bed, and upper sand bed and it is surmised that these four units are closely related in time. The lower sand bed (~1.5m), which overlies lower Miocene sediments and from which it is separated by the Ross Sea Unconformity, contains traces of recycled Miocene diatoms but is otherwise barren of biogenic material. The diamicton bed (~2.42 m) contains 21 species of benthic foraminifera, with assemblages consistently dominated by Cassidulinoides porrectus, Ammoelphidiella antarctica, Rosalina cf. globularis, Cibicides refulgens, and Ehrenbergina glabra. The overlying middle sand bed (~1.9 m) contains 13 species. with C. porrectus and E. glabra dominant and A. antarctica less common than in the underlying diamicton bed. The upper sand bed (~0.46 m) contains four species and very few tests. The diamicton bed and middle sand bed assemblages are considered to be near in situ thanatocoenoses; and sediments interpreted as marine in origin but influenced by hyposaline waters and nearby ice. Planktic taxa are absent, perhaps indicating the presence of tidewater glaciers, sea ice and/or hyposaline surface waters. The small assemblage in the upper sand bed is more problematic and may be recycled. On the basis of foraminifera in the diamicton and middle sand beds. LSU 2.2 is assigned to the Pliocene. The overlying diamicton in LSU 2.1 contains abundant Quaternary foraminifera.
Resumo:
Surface active substances (SAS) in the water column were measured by voltammetry using the electrochemical probe o-nitrophenol (ONP) during EIFEX, a mesoscale open ocean iron enrichment experiment in the Southern Ocean. SAS levels were low throughout the experiment (<0.005 - 0.03 mg/L Triton X-100 equivalents). Initially SAS was extremely low in the photic zone, but as the phytoplankton bloom developed concentrations markedly increased throughout the upper 100 m (~0.02 mg/L Triton X-100 equivalents). Highest concentrations of SAS (>0.02 mg/L Triton X-100 equivalents) were found at the end of the bloom particularly at density discontinuities where organic material may accumulate. Exudates from diatoms appeared to be the major source of SAS during EIFEX, either from direct extracellular release or in the action of being grazed upon by zooplankton.
Resumo:
Panktonic foraminiferal tests of the spinose species Orbulina universa, of the non-spinose Globorotalia tumida-menardii complex, and of a mixed species assemblage (grain size fraction 200-400 µm) were isolated from Sierra Leone Rise core GIK13519-2 and analyzed for free, total, and bound (by difference) amino acids to study the isoleucine epimerization mechanism in fossil foraminiferal tests and to define empirical calibration curves for dating deep-sea sediments over the past 900,000 years. Total isoleucine epimerization curves typically separate into three "linear" segments of decreasing apparents rates with increasing time and exhibit a pronounced "species effect". The degree of epimerization attained at time is considerably lower in O. universa than in G. tumida-menardii while the mixed species results scatter between the limits delineated by the two monospecific curves. Total allo/iso ratios are closely related to the proportion of free to total isoleucine accumulating in the tests indicating that the rate of hydrolysis of matrix proteins and peptides controls the overall epimerization reaction. The results are consistent with experimental evidenve where upon isoleucine epimerizes at a rapid rate in terminal positions but at slow rates in interior positions as well as in the free state. Notwithstanding free isoleucine exhibits the highest degree of epimerized terminal isoleucine. Species-specific hydrolysis and epimerization rates are maintained until about 50 % of bound isoleucine have been hydrolyzed to the free state corresponding to a total allo/iso ratio of about 0.5. Remaining peptide units appear to be more resistent against hydrolysis and separate species then show the same apparent epimerization rate dominantly controlled by the slow conversion rate in the free state until equilibrium is achieved in Miocene samples under deep-ocean temperature conditions. The degree of epimerization attained at comparable time in separate species will, however, remain different due to different initial rates of hydrolysis.
Resumo:
Shallow- to deep-water environments are represented by the sediments and rocks recovered from the Walvis Ridge- Angola Basin transect. These calcareous oozes, chalks, limestones, and volcaniclastic sedimentary rocks are used to define and correlate four lithostratigraphic units. The sediments were deposited in cycles which represent recurring tectonic or Oceanographic events and may be related to climatic fluctuations and orbital perturbations. Turbidites are the most common and easily identified sedimentary cycle. They are Late Cretaceous to Paleocene in age and are repeated in intervals ranging from thousands to tens of thousands of years. They are also found interbedded between basalt layers. Turbidites are easily distinguished from the other cycles present by their sedimentary structures, mineral composition, alteration products, and physical properties (GRAPE) data. Large-scale turbidites, debris, or slump breccias are found at or just above the Cretaceous/Tertiary boundary and indicate an event of considerable energy possibly related to intense tectonic activity. Diagenetic cycles, interpreted as small-scale dissolution cycles or sequences produced by biogenic activity, occur in early Paleocene chalks. The recurrence intervals average -20,000 y. but have a wide range of values. Variations in CaCO3 content, color, gradational boundaries, and trace fossil content characterize these sediments. These cycles reflect bottom-water conditions. Ooze-chalk cycles occur in upper Oligocene to upper Paleocene sediments and represent conditions that once existed at the sediment/water interface where they obtained their diagenetic potential. These oscillations are repeated over tens of thousands of years and may have no modern analogs. Color variations in sediments at the Cretaceous/Tertiary boundary indicate local fluctuations in oxygen content within the sediments or the water column. This situation lasted for several hundred thousand years and is not repeated elsewhere in the sequence. Large dissolution cycles are recorded in the sediments at Site 527 that are of middle Miocene and early Oligocene to middle Eocene age. During this time the seafloor at this site appears to have been located at or subsided to a depth occupied by a fluctuating CCD and lysocline.
Resumo:
Measurements of Fe(II) and H2O2 were carried out in the Atlantic sector of the Southern Ocean during EisenEx, an iron enrichment experiment. Iron was added on three separate occasions, approximately every 8 days, as a ferrous sulfate (FeSO4) solution. Vertical profiles of Fe(II) showed maxima consistent with the plume of the iron infusion. While H2O2 profiles revealed a corresponding minima showing the effect of oxidation of Fe(II) by H2O2, observations showed detectable Fe(II) concentrations existed for up to 8 days after an iron infusion. H2O2 concentrations increased at the depth of the chlorophyll maximum when iron concentrations returned to pre-infusion concentrations (<80 pM) possibly due to biological production related to iron reductase activity. In this work, Fe(II) and dissolved iron were used as tracers themselves for subsequent iron infusions when no further SF6 was added. EisenEx was subject to periods of weak and strong mixing. Slow mixing after the second infusion allowed significant concentrations of Fe(II) and Fe to exist for several days. During this time, dissolved and total iron in the infusion plume behaved almost conservatively as it was trapped between a relict mixed layer and a new rain-induced mixed layer. Using dissolved iron, a value for the vertical diffusion coefficient Kz=6.7±0.7 cm**2/s was obtained for this 2-day period. During a subsequent surface survey of the iron-enriched patch, elevated levels of Fe(II) were found in surface waters presumably from Fe(II) dissolved in the rainwater that was falling at this time. Model results suggest that the reaction between uncomplexed Fe(III) and O2? was a significant source of Fe(II) during EisenEx and helped to maintain high levels of Fe(II) in the water column. This phenomenon may occur in iron enrichment experiments when two conditions are met: (i) When Fe is added to a system already saturated with regard to organic complexation and (ii) when mixing processes are slow, thereby reducing the dispersion of iron into under-saturated waters.
Resumo:
We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K' paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST's) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K' values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K' and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K' = 0.033 T + 0.069, r**2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K' reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K' vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K' data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0-29°C) from 0 m water depth. The resulting relationship (U37K' = 0.033 T + 0.044, r**2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of and attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K' is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K' in open ocean environments.
Resumo:
The upper Albian to Coniacian section (Cores 105 to 89) at Site 530 contains rare and poorly preserved coccoliths at a few levels and fine-fraction carbonate ("micarb") at all the levels studied. Dissolution ranking of the most resistant coccolith species is possible. Changes in the dissolution intensity resulting from variations in the organic carbon and carbonate input seem a likely explanation for changes in the relative abundance of fine-fraction carbonates types.
Resumo:
We analysed long-chain alkenones in sinking particles and surface sediments from the filamentous upwelling region off Cape Blanc, NW Africa, to evaluate the transfer of surface water signals into the geological record. Our study is based on time-series sediment trap records from 730 m (1990-1991) to 2195-3562 m depth (1988-1991). Alkenone fluxes showed considerable interannual variations and no consistent seasonality. The average flux of C37 and C38 alkenones to the deep traps was 1.9 µg/m**2/d from March 1988 to October 1990 and sevenfold higher in the subsequent year. Alkenone fluxes to the shallower traps were on average twice as high and showed similar temporal variations. The alkenone unsaturation indices UK'37, UK38Me and UK38Et closely mirrored the seasonal variations in sea-surface temperature (weekly Reynolds SST). Time lags of 10-48 days between the SST and unsaturation maxima suggest particle sinking rates of about 80 and 280 m/d for the periods of low and high alkenone fluxes, respectively. The average flux-weighted UK'37 temperature for the 4-year time series of the deeper traps was 22.1°C, in perfect agreement with the mean weekly SST for the same period. This and the comparison with seasonal temperature variations in the upper 100 m of the water column suggests that UK'37 records principally the yearly average of the mixed-layer temperature in this region. A comparison between the average annual alkenone fluxes to the lower traps (2400 µg/m**2/yr) and into the underlying sediments (4 µg/m**2/yr) suggests that only about 0.2% of the alkenones reaching the deep ocean became preserved in the sediments. The flux-weighted alkenone concentrations also decreased considerably, from 2466 µg/gC in the water column to 62 µg/gC in the surface sediments. Such a low degree of alkenone preservation is typical for slowly accumulating oxygenated sediments. Despite these dramatic diagenetic alkenone losses, the UK'37 ratio was not affected. The average UK'37 value of the sediments (0.796±0.010 or 22.3±0.3°C) was identical within error limits to the 4-year average of the lower traps. The unsaturation indices for C38 alkenones and the ratio between C37 and C38 alkenones also revealed a high degree of stability. Our results do not support the hypothesis that UK'37 is biased towards higher values during oxic diagenesis.
Resumo:
Volcanic ash layers (1-3 cm thick) are abundant in the North Aoba Basin drill sites but less common at forearc sites. Ash deposited on the forearc slopes is liable to be redistributed as turbidites. In addition, the westerly upper winds also minimize ash-fall on the western (forearc) side of the New Hebrides Island Arc. Crystalline components in the ashes are primarily plagioclase (An90-An44), clinopyroxene (Ca46Mg49Fe5-Ca43Mg33Fe24), olivine (Fo87-Fo62), and titanomagnetite. There are also small amounts of orthopyroxene, magnetite, apatite, and quartz. Glass shards occur in most of the ashes and range in composition from basalt to rhyolite. There is often a variety of glass compositions within a single ash layer. One explanation for this is that the rate of accumulation of ash from several different eruptions or eruptive phases exceeded the background sedimentation rate: there may also have been a certain amount of reworking. The high-K and low-K trends previously recognized in volcanic rocks from the New Hebrides Island Arc are clearly represented in the Leg 134 glasses. All of the ashes investigated here are thought to have originated from the Central Chain volcanoes. The source of the high-K group was probably the Central Basin volcanoes of Santa Maria, Aoba, and Ambrym. The lower-K series includes a distinctive group of dacites and is likely to have originated from the Epi-Tongoa-Tongariki sector of the arc where major pyroclastic eruptions, associated with caldera collapse, have occurred during the Holocene, perhaps as recently as 400 yr ago.
Resumo:
Variations in the stable isotopic composition of benthic foraminifera from Deep-Sea Drilling Project (DSDP) site 502B in the Caribbean Sea are used to reconstruct Atlantic intermediate water circulation variability over the last 1.2 m.y. Comparison of this record with other North Atlantic benthic isotope records indicates that Atlantic intermediate water circulation was relatively enhanced during glacial maxima when North Atlantic deep water (NADW) production was reduced. However, a simple, compensatory relationship between intermediate and deepwater circulation is not apparent. Geochemical models have shown that such changes in ocean circulation can affect atmospheric CO2 levels by changing vertical nutrient and alkalinity profiles. The Delta delta13C difference between Caribbean site 502B and deep equatorial Pacific site 677 is highly coherent and in phase with ice volume. Like the delta18O record, there is an increase in amplitude (40%) and a large increase in 100 kyr power after 0.7 Ma. The 1.2? Delta delta13C amplitude scales to 70 ppm V in atmospheric CO2 using Boyle's (1986) box model result. The implied increase in CO2 amplitude after 0.7 Ma may suggest a positive feedback role in effecting the higher-amplitude climatic fluctuations which characterize the last 0.7 m.y.
Resumo:
Primary productivity (14C) and mass flux measurements using a free-drifting sediment trap deployed at 900 m were made at four stations in the Pacific Ocean between 12°N and 6°S at 153°W. The latitudinal variations in productivity were consistent with historical patterns showing the equator as a zone of high production and the oligotrophic waters north of the equatorial region as an area of low productivity. The correlation coefficient between the two sets of independent measurements was 0.999, indicating that in this oceanic area the activity of the primary producers was closely related to the total mass flux. A re-examination of historical data suggests that the downward flux of particulate organic carbon varies in direct proportion to the quotient of surface primary production raised to the 1.4 power and depth raised to the 0.63 power.
Resumo:
Manganese nodules made of radiating rods of well crystallized birnessite were sampled at 8 degree 481.2'N, 103 degree 53.8W, 1875 m below sea level by a dredge that also collected hyaloclastite and basaltic talus. The nodule field is on the floor of a caldera within a young tholeiitic seamount and was discovered and photographed during a deep-two survey. It is interpreted as a brecciated hydrothermal deposit, crystallized from an amorphous manganese oxide precipitate that formed when seawater-based hydrothermal fluids mixed with oxidized seawater. The nodules and surrounding igneous rocks have subsequently been encrusted with hydrogenous ferromanganese oxides.