963 resultados para Viking Mining Company


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crushed stone mining is the third largest mining economy in Brazil, where almost half is produced in the Sao Paulo metropolitan region. The segment registers the highest number of accidents among the extractive industries, which justifies the concern with workers` health and safety, and the importance of controlling occupational hazards. Since 2002, the NR-22 Standard (NR-22: Occupational Health and Safety in Mining) makes compulsory the elaboration of a Risk Management Program that identifies risks and establishes control measures. Considering the crushed stone mining industry importance to the state, this paper evaluates and discusses the risks identified in unit operations during the production process of crushed stone in an open pit mine in order to propose control measures for the development of the Risk Management Program. Although this study refers to a specific quarry, it can be applied to other mines from the same sector since some considerations are made regarding differences in manufacturing processes. The research was based on the identification of the main risks associated with drilling, blasting, load & haulage, crushing and screening through field measurements of some hazardous agents, together with company reports. The results contributed to the choice of the appropriate control measures for the improvement Of workers` health and safety conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1990s several large companies have been publishing nonfinancial performance reports. Focusing initially on the physical environment, these reports evolved to consider social relations, as well as data on the firm`s economic performance. A few mining companies pioneered this trend, and in the last years some of them incorporated the three dimensions of sustainable development, publishing so-called sustainability reports. This article reviews 31 reports published between 2001 and 2006 by four major mining companies. A set of 62 assessment items organized in six categories (namely context and commitment, management, environmental, social and economic performance, and accessibility and assurance) were selected to guide the review. The items were derived from international literature and recommended best practices, including the Global Reporting Initiative G3 framework. A content analysis was performed using the report as a sampling unit, and using phrases, graphics, or tables containing certain information as data collection units. A basic rating scale (0 or 1) was used for noting the presence or absence of information and a final percentage score was obtained for each report. Results show that there is a clear evolution in report`s comprehensiveness and depth. Categories ""accessibility and assurance"" and ""economic performance"" featured the lowest scores and do not present a clear evolution trend in the period, whereas categories ""context and commitment"" and ""social performance"" presented the best results and regular improvement; the category ""environmental performance,"" despite it not reaching the biggest scores, also featured constant evolution. Description of data measurement techniques, besides more comprehensive third-party verification are the items most in need of improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconciliation can be divided into stages, each stage representing the performance of a mining operation, such as: long-term estimation, short-term estimation, planning, mining and mineral processing. The gold industry includes another stage which is the budget, when the company informs the financial market of its annual production forecast. The division of reconciliation into stages increases the reliability of the annual budget informed by the mining companies, while also detecting and correcting the critical steps responsible for the overall estimation error by the optimization of sampling protocols and equipment. This paper develops and validates a new reconciliation model for the gold industry, which is based on correct sampling practices and the subdivision of reconciliation into stages, aiming for better grade estimates and more efficient control of the mining industry`s processes, from resource estimation to final production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work makes a comparative economic analysis of a small-, medium- and large-sized mineral water company, the three of which are localized in the State of Sao Paulo. All have the same lines of production such as glasses, bottles and big bottles. The analysis involves the cash flow comparison of the three companies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy, project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m(2). According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems` energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users` references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings` energy efficiency. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. This study aimed to investigate relationships between environmental aesthetics, convenience, and walking companions and walking for exercise or recreation and to investigate differences in these relationships by sex and by reported physical and mental health. Methods. Analyses of cross-sectional self-report data from a statewide population survey of 3,392 Australian adults were used. Results. Men and women reporting a less aesthetically pleasing or less convenient environment were less likely to report walking for exercise or recreation in the past 2 weeks. Those respondents, particularly women, reporting no company or pet to walk with were also less likely to walk for exercise or recreation. Associations with environmental and social influences were observed for men and women reporting both good and poor physical and mental health. Conclusions. Perceived environmental aesthetics and convenience and walking companions are important correlates of walking for exercise among urban Australians. Acknowledging the cross-sectional nature of these data, findings support a case for evaluation of environmental policies to promote physical activity. (C) 2001 American Health Foundation and Academic Press.