926 resultados para Vibration intensities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of natural frequencies corresponding to axisymmetric modes of flexural vibration of polar orthotropic annular plates have been obtained for various combinations of clamped, simply supported and free edge conditions. A coordinate transformation in the radial direction has been used to obtain effective solutions by the classical Rayleigh-Ritz method. The analysis with this transformation has been found to be advantageous in computations, particularly for large hole sizes, over direct analysis. Numerical results have been obtained for various values of hole sizes and rigidity ratio. The eigenvalue parameter has been found to vary more or less linearly with the rigidity ratio. A comparison with the results for isotropic plates has brought out some interesting features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the structural elements like beams, cables etc. are flexible and should be modeled as distributed parameter systems (DPS) to represent the reality better. For large structures, the usual approach of 'modal representation' is not an accurate representation. Moreover, for excessive vibrations (possibly due to strong wind, earthquake etc.), external power source (controller) is needed to suppress it, as the natural damping of these structures is usually small. In this paper, we propose to use a recently developed optinial dynamic inversion technique to design a set of discrete controllers for this purpose. We assume that the control force to the structure is applied through finite number of actuators, which are located at predefined locations in the spatial domain. The method used in this paper determines control forces directly from the partial differential equation (PDE) model of the system. The formulation has better practical significance, both because it leads to a closed form solution of the controller (hence avoids computational issues) as well as because a set of discrete actuators along the spatial domain can be implemented with relative ease (as compared to a continuous actuator).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of controlling the vibration pattern of a driven string is considered. The basic question dealt with here is to find the control forces which reduce the energy of vibration of a driven string over a prescribed portion of its length while maintaining the energy outside that length above a desired value. The criterion of keeping the response outside the region of energy reduction as close to the original response as possible is introduced as an additional constraint. The slack unconstrained minimization technique (SLUMT) has been successfully applied to solve the above problem. The effect of varying the phase of the control forces (which results in a six-variable control problem) is then studied. The nonlinear programming techniques which have been effectively used to handle problems involving many variables and constraints therefore offer a powerful tool for the solution of vibration control problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free vibration of circular plates of arbitrary thickness is investigated using the method of initial functions. State-space approach is used to derive the governing equations of the above method. The formulation is such that theories of any desired order can be obtained by deleting higher terms in the infinite-order differential equations. Numerical results are obtained for flexural and extensional vibration of circular plates. Results are also computed using Mindlin's theory and they are in agreement with the present analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explicit criteria for the optimum design of an untuned viscous dynamic vibration absorber are developed for the case of a viscously damped single degree of freedom springmass system. It is shown that for the particular case of an undamped main system, the results reduce to the classical ones obtained by using the concept of a fixed point on the response curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important factors that affect the pointing of precision payloads and devices in space platforms is the vibration generated due to static and dynamic unbalanced forces of rotary equipments placed in the neighborhood of payload. Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as ‘micro-vibrations’. Due to low damping in the space structure, these vibrations have long decay time and they degrade the performance of payload. This paper addresses the design, modeling and analysis of a low frequency space frame platform for passive and active attenuation of micro-vibrations. This flexible platform has been designed to act as a mount for devices like reaction wheels, and consists of four folded continuous beams arranged in three dimensions. Frequency and response analysis have been carried out by varying the number of folds, and thickness of vertical beam. Results show that lower frequencies can be achieved by increasing the number of folds and by decreasing the thickness of the blade. In addition, active vibration control is studied by incorporating piezoelectric actuators and sensors in the dynamic model. It is shown using simulation that a control strategy using optimal control is effective for vibration suppression under a wide variety of loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two storey bilinear hysteretic structures have been studied with a view to exploring the possibility of using the dynamic vibration absorber concept in earthquake-resistant design. The response of the lower storey has been optimized for the Taft 1952, S69°E accelerogram with reference to parameters such as frequency ratio, yield strength ratio and mass ratio. The influence of viscous damping has also been examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state space approach is extended to the two dimensional elastodynamic problems. The formulation is in a form particularly amenable to consistent reduction to obtain approximate theories of any desired order. Free vibration of rectangular beams of arbitrary depth is investigated using this approach. The method does not involve the concept of the shear coefficientk. It takes into account the vertical normal stress and the transverse shear stress. The frequency values are calculated using the Timoshenko beam theory and the present analysis for different values of Poisson's ratio and they are in good agreement. Four cases of beams with different end conditions are considered.Die Zustandsraum-Technik wird auf zweidimensionale elastodynamische Probleme ausgedehnt. Die Formulierung ist besonders geeignet für die Aufstellung von Näherungstheorien beliebigen Grades. Freie Schwingungen von Rechteckbalken beliebiger Höhe wurden mit Hilfe dieser Technik untersucht. Das Verfahren umgeht den Begriff des Schubbeiwertsk. Es berücksichtigt die senkrechte Normalbeanspruchung und die Querkraft. Die Frequenzwerte werden mit Hilfe der Balkentheorie von Timoshenko und der vorliegenden Analyse berechnet, und zwar für verschiedene Werte der Querdehnzahl. Die berechneten Werte befinden sich in guter Übereinstimmung. Vier Fälle von Balken mit verschiedenen Endbedingungen werden untersucht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.