998 resultados para Vermiculite. Pyrolysis. LDPE. SBA-15.
Resumo:
This paper presents a goal programming model to optimise the deployment of pyrolysis plants in Punjab, India. Punjab has an abundance of waste straw and pyrolysis can convert this waste into alternative bio-fuels, which will facilitate the provision of valuable energy services and reduce open field burning. A goal programming model is outlined and demonstrated in two case study applications: small scale operations in villages and large scale deployment across Punjab's districts. To design the supply chain, optimal decisions for location, size and number of plants, downstream energy applications and feedstocks processed are simultaneously made based on stakeholder requirements for capital cost, payback period and production cost of bio-oil and electricity. The model comprises quantitative data obtained from primary research and qualitative data gathered from farmers and potential investors. The Punjab district of Fatehgarh Sahib is found to be the ideal location to initially utilise pyrolysis technology. We conclude that goal programming is an improved method over more conventional methods used in the literature for project planning in the field of bio-energy. The model and findings developed from this study will be particularly valuable to investors, plant developers and municipalities interested in waste to energy in India and elsewhere. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the non-catalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition, theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 °C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 °C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 °C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap. © 2005 American Chemical Society.
Resumo:
This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.
Resumo:
The paper presents the simulation of the pyrolysis vapors condensation process using an Eulerian approach. The condensable volatiles produced by the fast pyrolysis of biomass in a 100 g/h bubbling fluidized bed reactor are condensed in a water cooled condenser. The vapors enter the condenser at 500 °C, and the water temperature is 15 °C. The properties of the vapor phase are calculated according to the mole fraction of its individual compounds. The saturated vapor pressure is calculated for the vapor mixture using a corresponding states correlation and assuming that the mixture of the condensable compounds behave as a pure fluid. Fluent 6.3 has been used as the simulation platform, while the condensation model has been incorporated to the main code using an external user defined function. © 2011 American Chemical Society.
Resumo:
The objectives of the experiment were to assess the impact of nitrogen (N) and potassium (K) fertiliser application on the cell wall composition and fast-pyrolysis conversion quality of the commercially cultivated hybrid Miscanthus x giganteus. Five different fertiliser treatments were applied to mature Miscanthus plants which were sampled at five intervals over a growing season. The different fertiliser treatments produced significant variation in concentrations of cell wall components and ash within the biomass and affected the composition and quality of the resulting fast-pyrolysis liquids. The results indicated that application of high rates of N fertiliser had a negative effect on feedstock quality for this conversion pathway: reducing the proportion of cell wall components and increasing accumulation of ash in the harvested biomass. No exclusive effect of potassium fertiliser was observed. The low-N fertiliser treatment produced high quality, low ash-high lignin biomass most suitable as a feedstock for thermo-chemical conversion. © 2010.
Resumo:
This paper analyzes the physical phenomena that take place inside an 1 kg/h bubbling fluidized bed reactor located at Aston University and presents a geometrically modified version of it, in order to improve certain hydrodynamic and gas flow characteristics. The bed uses, in its current operation, 40 L/min of N2 at 520 °C fed through a distributor plate and 15 L/min purge gas stream, i.e., N2 at 20 °C, via the feeding tube. The Eulerian model of FLUENT 6.3 is used for the simulation of the bed hydrodynamics, while the k - ε model accounts for the effect of the turbulence field of one phase on the other. The three-dimensional simulation of the current operation of the reactor showed that a stationary bubble was formed next to the feeding tube. The size of the permanent bubble reaches up to the splash zone of the reactor, without any fluidizaton taking place underneath the feeder. The gas flow dynamics in the freeboard of the reactor is also analyzed. A modified version of the reactor is presented, simulated, and analyzed, together with a discussion on the impact of the flow dynamics on the fast pyrolysis of biomass. © 2010 American Chemical Society.
Resumo:
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.
Resumo:
The main objective of this research was to investigate pyrolysis and torrefaction of forest biomass species using a micropyrolysis instrument. It was found that 30-45% of the original sample mass remained as bio-char in the pyrolysis temperature range of 500 - 700˚C for aspen, balsam, and switchgrass. The non-char mass was converted to gaseous and vapor products, of which 10-55% was water and syngas, 2-12% to acetic acid, 2-12% to hydroxypropanone, 1-3% to furaldehyde, and 5-15% to various phenolic compounds. In addition, several general trends in the evolution of gaseous species were indentified when woody feedstocks were pyrolyzed. With increasing temperature it was observed that: (1) the volume of gas produced increased, (2) the volume of CO2 decreased and the volumes of CO and CH4 increased, and (3) the rates of gas evolution increased. In the range of torrefaction temperature (200 - 300˚C), two mechanistic models were developed to predict the rates of CO2 and acetic acid product formation. The models fit the general trend of the experimental data well, but suggestions for future improvement were also noted. Finally, it was observed that using torrefaction as a pre-curser to pyrolysis improves the quality of bio-oil over traditional pyrolysis by reducing the acidity through removal of acetic acid, reducing the O/C ratio by removal of some oxygenated species, and removing a portion of the water.
Resumo:
In this study, rice husk and corn stalk have been pyrolyzed in an auger pyrolysis reactor at pyrolysis temperatures of 350, 400, 450, 500, 550, and 600 °C in order to investigate the effect of the pyrolysis temperature on the pyrolysis performance of the reactor and physicochemical properties of pyrolysis products (this paper focuses on char and gas). The results have shown that the pyrolysis temperature significantly affects the mass yields and properties of the pyrolysis products. The mass yields of pyrolysis liquid and char are comparable to those reported for the same feedstocks processed in fluidized bed reactors. With the increase of the pyrolysis temperature, the pyrolysis liquid yield shows a peak at 500 °C, the char yield decreases, and the gas yield increases for both feedstocks. The higher heating value (HHV) and volatile matter content of char increase as the pyrolysis temperature increases from 350 to 600 °C. The gases obtained from the pyrolysis of rice husk and corn stalk mainly contain CO2, CO, CH4, H2, and other light hydrocarbons; the molar fractions of combustible gases increase and therefore their HHVs subsequently increase with the increase of the pyrolysis temperature.
Resumo:
The aim of this study was to evaluate the peripheral effect of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in albumin-induced arthritis in temporomandibular joint (TMJ) of rats. Antigen-induced arthritis (AIA) was generated in rats with methylated bovine serum albumin (mBSA) diluted in complete Freund׳s adjuvant. Pretreatment with an intra-articular injection of 15d-PGJ2 (100 ng/TMJ) before mBSA intra-articular injection (10 µg/TMJ) (challenge) in immunized rats significantly reduced the albumin-induced arthritis inflammation. The results demonstrated that 15d-PGJ2 was able to inhibit plasma extravasation, leukocyte migration and the release of inflammatory cytokines IL-6, IL-12, IL-18 and the chemokine CINC-1 in the TMJ tissues. In addition, 15d-PGJ2 was able to increase the expression of the anti-adhesive molecule CD55 and the anti-inflammatory cytokine IL-10. Taken together, it is possible to suggest that 15d-PGJ2 inhibit leukocyte infiltration and subsequently inflammatory process, through a shift in the balance of the pro- and anti-adhesive properties. Thus, 15d-PGJ2 might be used as a potential anti-inflammatory drug to treat arthritis-induced inflammation of the temporomandibular joint.
Resumo:
Waterlogging of soils is common in nature. The low availability of oxygen under these conditions leads to hypoxia of the root system impairing the development and productivity of the plant. The presence of nitrate under flooding conditions is regarded as being beneficial towards tolerance to this stress. However, it is not known how nodulated soybean plants, cultivated in the absence of nitrate and therefore not metabolically adapted to this compound, would respond to nitrate under root hypoxia in comparison with non-nodulated plants grown on nitrate. A study was conducted with (15)N labelled nitrate supplied on waterlogging for a period of 48 h using both nodulated and non-nodulated plants of different physiological ages. Enrichment of N was found in roots and leaves with incorporation of the isotope in amino acids, although to a much smaller degree under hypoxia than normoxia. This demonstrates that nitrate is taken up under hypoxic conditions and assimilated into amino acids, although to a much lesser extent than for normoxia. The similar response obtained with nodulated and non-nodulated plants indicates the rapid metabolic adaptation of nodulated plants to the presence of nitrate under hypoxia. Enrichment of N in nodules was very much weaker with a distinct enrichment pattern of amino acids (especially asparagine) suggesting that labelling arose from a tissue source external to the nodule rather than through assimilation in the nodule itself.
Resumo:
Swine production represents an important segment of Brazilian economy, and the possibility of increasing production is eminent mainly if considered the low pork consumption when compared to other meat and the consumption of other countries. The increasing need in the international market demands show that in a near future the commercial barriers will be based on welfare, in the protection of the environment as well as in the worker's legislation. Little knowledge is available in the subject of worker's standards in the environmental agents in rural activities as well as the air quality under Brazilian conditions. The objectives of this research were to apply the main used standards related to noise and gases and to estimate occupational risk using measurements of noise level, hydrogen sulfide, methane and oxygen in swine housing, in piglet's nursery and finishing. The results showed that the continuous noise level were below the one found in the standards, however there were observed differences (P < 0.05) in relation to the noise level measured in piglet's nursing cages and in semi-slatted floor. The respective concentrations of hydrogen sulfide and methane were less than 1 ppm and less than 0,1% by volume, which was lower than the recommended limits in NR-15, CIGR and ACGIH. The oxygen level was 21% in average.
Resumo:
The objective of the work was to evaluate the effects of environment, recipients, and substrate compositions in passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) seedlings biomass production in Pantanal region from September to November of 2006. Experimental trials were conducted in four protected environments, in two types of containers and three different substrate compositions. The environments were: A1 (greenhouse covered with low-density, 150-microns-thick polyethylene film), A2 (monofilament black screened with mesh for 50% of shade), A3 (aluminized screened with mesh for 50% of shade) and A4 (environment covered with straw of native coconut palm); the recipients were: polyethylene bags (R1) (15 x 25 cm) and polystyrene trays (R2) (with 72 cells). There substrates were: S1 (soil + organic compost + vermiculite, 1:1: 1 v/v), S2 (soil + organic compost + sawdust, 1:1: 1 v/v) and S3 (soil + organic compost + vermiculite + sawdust, 1:1: 1/2: 1/2 v/v). The experimental design was completely randomized statistical analysis in split-split-plot, with fifteen replications. The treatments in the plot were environments, in the subplots were pots, and subsubplots were substrates (4 x 2 x 3 = 24 treatments). Fresh and dry mass of aerial and root system parts were evaluated. Environments with screen showed better results for seedlings of yellow passion fruit biomass in polyethylene bags. Polyethylene bags promoted higher biomasses. The substrate with vermiculite showed better results for both types of containers. The substrate with a higher percentage of sawdust showed the worst result.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física