934 resultados para Ventral prostate
Resumo:
Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.
Resumo:
Purpose: Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. Experimental Design: Castration-resistant C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) were generated to directly test the effects of AR knockdown in C4-2 human prostate cancer cells and tumors. Results:In vitro expression of AR shRNA resulted in decreased levels of AR mRNA and protein, decreased expression of prostate-specific antigen (PSA), reduced activation of the PSA-luciferase reporter, and growth inhibition of C4-2 cells. Gene microarray analyses revealed that AR knockdown under hormone-deprived conditions resulted in activation of genes involved in apoptosis, cell cycle regulation, protein synthesis, and tumorigenesis. To ensure that tumors were truly castration-resistant in vivo, inducible AR shRNA expressing C4-2 tumors were grown in castrated mice to an average volume of 450 mm3. In all of the animals, serum PSA decreased, and in 50% of them, there was complete tumor regression and disappearance of serum PSA. Conclusions: Whereas castration is ineffective in castration-resistant prostate tumors, knockdown of AR can decrease serum PSA, inhibit tumor growth, and frequently cause tumor regression. This study is the first direct evidence that knockdown of AR is a viable therapeutic strategy for treatment of prostate tumors that have already progressed to the castration-resistant state.
Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene
Resumo:
Hexachlorobenzene (HCB) is a persistent environmental contaminant that has the potential to interfere with steroid hormone regulation. The prostate requires precise control by androgens to regulate its growth and function. To determine if HCB impacts androgen action in the prostate, we used a number of methods. Our in vitro cell-culture-based assay used a firefly luciferase reporter gene driven by an androgen-responsive promoter. In the presence of dihydrotestosterone, low concentrations (0.5-5 nM) of HCB increased the androgen-responsive production of firefly luciferase and high concentrations of HCB (> 10 microM) suppressed this transcriptional activity. Results from a binding assay showed no evidence of affinity between HCB and the androgen receptor. We also tested HCB for in vivo effects using transgenic mice in which the transgene was a prostate-specific, androgen-responsive promoter upstream of a chloramphenicol acetyl transferase (CAT) reporter gene. In 4-week-old mice, the proportion of dilated prostate acini, a marker of sexual maturity, increased in the low HCB dose group and decreased in the high HCB dose mice. In the 8-week-old mice, there was a significant decrease in both CAT activity and prostate weight upon exposure to 20 mg/kg/day HCB. Therefore, in vitro and in vivo data suggest that HCB weakly agonizes androgen action, and consequently, low levels of HCB enhanced androgen action but high levels of HCB interfered. Environmental contaminants have been implicated in the rising incidence of prostate cancer, and insight into the mechanisms of endocrine disruption will help to clarify their role.
Resumo:
Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
Background: Patterns of diagnosis and management for men diagnosed with prostate cancer in Queensland, Australia, have not yet been systematically documented and so assumptions of equity are untested. This longitudinal study investigates the association between prostate cancer diagnostic and treatment outcomes and key area-level characteristics and individual-level demographic, clinical and psychosocial factors.---------- Methods/Design: A total of 1064 men diagnosed with prostate cancer between February 2005 and July 2007 were recruited through hospital-based urology outpatient clinics and private practices in the centres of Brisbane, Townsville and Mackay (82% of those referred). Additional clinical and diagnostic information for all 6609 men diagnosed with prostate cancer in Queensland during the study period was obtained via the population-based Queensland Cancer Registry. Respondent data are collected using telephone and self-administered questionnaires at pre-treatment and at 2 months, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months post-treatment. Assessments include demographics, medical history, patterns of care, disease and treatment characteristics together with outcomes associated with prostate cancer, as well as information about quality of life and psychological adjustment. Complementary detailed treatment information is abstracted from participants’ medical records held in hospitals and private treatment facilities and collated with health service utilisation data obtained from Medicare Australia. Information about the characteristics of geographical areas is being obtained from data custodians such as the Australian Bureau of Statistics. Geo-coding and spatial technology will be used to calculate road travel distances from patients’ residences to treatment centres. Analyses will be conducted using standard statistical methods along with multilevel regression models including individual and area-level components.---------- Conclusions: Information about the diagnostic and treatment patterns of men diagnosed with prostate cancer is crucial for rational planning and development of health delivery and supportive care services to ensure equitable access to health services, regardless of geographical location and individual characteristics. This study is a secondary outcome of the randomised controlled trial registered with the Australian New Zealand Clinical Trials Registry (ACTRN12607000233426)
Resumo:
In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3–ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense–antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3′ untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5′ and 3′ rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5′ RACE and analyses of deep sequencing data from LNCaP cells treated ±androgens revealed six high-confidence sense–antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense–antisense chimeric transcription.