932 resultados para Vegetation succession


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study in Western Ghats, India, investigates the relation between nesting sites of ants and a single remotely sensed variable: the Normalised Difference Vegetation Index (NDVI). We carried out sampling in 60 plots each measuring 30 x 30 m and recorded nest sites of 13 ant species. We found that NDVI values at the nesting sites varied considerably between individual species and also between the six functional groups the ants belong to. The functional groups Cryptic Species, Tropical Climate Specialists and Specialist Predators were present in regions with high NDVI whereas Hot Climate Specialists and Opportunists were found in sites with low NDVI. As expected we found that low NDVI values were associated with scrub jungles and high NDVI values with evergreen forests. Interestingly, we found that Pachycondyla rufipes, an ant species found only in deciduous and evergreen forests, established nests only in sites with low NDVI (range = 0.015 - 0.1779). Our results show that these low NDVI values in deciduous and evergreen forests correspond to canopy gaps in otherwise closed deciduous and evergreen forests. Subsequent fieldwork confirmed the observed high prevalence of P. rufipes in these NDVI-constrained areas. We discuss the value of using NDVI for the remote detection and distinction of ant nest sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A terrestrial biosphere model with dynamic vegetation capability, Integrated Biosphere Simulator (IBIS2), coupled to the NCAR Community Atmosphere Model (CAM2) is used to investigate the multiple climate-forest equilibrium states of the climate system. A 1000-year control simulation and another 1000-year land cover change simulation that consisted of global deforestation for 100 years followed by re-growth of forests for the subsequent 900 years were performed. After several centuries of interactive climate-vegetation dynamics, the land cover change simulation converged to essentially the same climate state as the control simulation. However, the climate system takes about a millennium to reach the control forest state. In the absence of deep ocean feedbacks in our model, the millennial time scale for converging to the original climate state is dictated by long time scales of the vegetation dynamics in the northern high latitudes. Our idealized modeling study suggests that the equilibrium state reached after complete global deforestation followed by re-growth of forests is unlikely to be distinguishable from the control climate. The real world, however, could have multiple climate-forest states since our modeling study is unlikely to have represented all the essential ecological processes (e. g. altered fire regimes, seed sources and seedling establishment dynamics) for the reestablishment of major biomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By recalling mankind's path during past 50 years in the present article, we mainly highlight the significance of environmental issues today. In particular, two major factors leading to environment deterioration in China such as water resources and coal burning are stressed on. Present-day environmental issues are obviously interdisciplinary, of multiple scales and multi-composition in nature. Therefore, a process-based approach for environment research is absolutely necessarily. A series of sub-processes, either physical, chemical or biological, are subsequently analyzed in order to established reasonable parameterization scheme and credible comprehensive model. And we are now in a position to answer questions still open to us, improve existing somewhat empirical engineering approaches and enhance quantitative accuracy in prediction. To illustrate this process-based research approach, three typical examples associated with the Yangtze River Estuary, Loess Plateau and Tenggeli Desert environments have been dealt with respectively. A theoretical model of vertical flow field accounting for runoff and tide interaction has been established to delineate salinity and sediment motion which are responsible for the formation of mouth bar at the outlet and the ecological evolution there. A kinematic wave theory combined with the revised Green-Ampt infiltration formula is applied to the prediction of runoff generation and erosion in three types of erosion region on the Loess Plateau. Three approaches describing water motion in SPAC system in arid areas at different levels have been improved by introducing vegetation sub-models. However, we have found that the formation of a dry sandy layer and biological crust skin are additional primary causes leading to deterioration of water supply and succession of ecological system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a ground hydrologic model(GHM) is presented in which the vapor, heat and momentum exchanges between ground surface covers (including vegetation canopy) and atmosphere is described more realistically. The model is used to simulate three sets of field data and results from the numerical simulation agree with the field data well. GHM has been tested using input data generated by general circulation model (GCM) runs for both the North American regions and the Chinese regions, The results from GHM are quite different from those of GHMs in GCMs. It shows that a more active concerted effort on the land surface process study to provide a physically realistic GHM for predicting the exchange between land and atmosphere is important and necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population characteristics of largemouth bass ( Micropterus salmoides L.) including growth, body condition (relative weight), survival, and egg production were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla [ Hydrilla verticillata L.f. Royle]) in three embayments of Lake Seminole, GA, and compared to a previous study conducted in 1998. (PDF has 8 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-lake techniques are increasingly being used to selectively remove exotic plants, including Eurasian watermilfoil ( Myriophyllum spicatum L.). Fluridone (1-methyl-3-phenyl- 5-[3-(trifluoromethyl)phenyl]-4(1 H )-pyridinone), a systemic whole-lake herbicide, is selective for Eurasian watermilfoil within a narrow low concentration range. Because fluridone applications have the potential for large effects on plant assemblages and lake food webs, they should be evaluated at the whole-lake scale. We examined effects of low-dose (5 to 8 ppb) fluridone applications by comparing submersed plant assemblages, water quality and largemouth bass ( Micropterus salmoides ) growth rates and diets between three reference lakes and three treatment lakes one- and two-years post treatment. In the treatment lakes, fluridone reduced Eurasian watermilfoil cover without reducing native plant cover, although the duration of Eurasian watermilfoil reduction varied among treatment lakes. (PDF has 11 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angler creel surveys and economic impact models were used to evaluate potential expansion of aquatic vegetation in Lakes Murray and Moultrie, South Carolina. (PDF contains 4 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 1997 to 2003, we examined the impacts of two aquatic herbicides, fluridone (Sonar; 1-methyl-3-phenyl-5-[3-(trifluromethl) phenyl]-4(1H)-pyridinone), and dipotassium salt of endothall (Aquathol K; 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid), used to control dense hydrilla (Hydrilla verticillata L. f. Royle), on population characteristics of juvenile largemouth bass (Micropterus salmoides Lacepede) in small coves (<10 ha) in Lake Seminole, Georgia. In addition, we estimated areal coverage and species composition of submersed aquatic vegetation (SAV) communities in each cove. Fish and plants were sampled in both control (hydrilla infested)and herbicide treated coves in November and March- April each year. Electrofishing catch-per-effort for both number and weight of age-0 and age-1 fish for the 1997 to 2002 year classes was either the same or higher (p < 0.05) in herbicide treated than in control coves. Age-0 fish were larger (p <0.05) in treated, than in control coves in November, but at age-1 in the following spring, fish were slightly longer (p <0.05) in the control coves. Higher age-0 catches were associated with greater percent reductions in numeric catch between age-0 and age-1 and reduced lengths of fish in November indicating density-dependent effects. Age-0 fish lengths were also negatively correlated to percent cover of both total and native SAV. Total or native SAV coverages were not associated with catch-per-unit effort for number and weight, but nearly all control and herbicide treated coves had total SAV coverage greater than 40%. Applications of both Sonar and Aquathol K reduced total SAV coverage and hydrilla, permitted the establishment of native SAVs, and had either neutral or positive impacts on young largemouth bass in small coves in Lake Seminole. (PDF contains 7 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense, monospecific cattail (Typha spp.) stands are a problem in many prairie wetlands because they alter habitat structure and function, resulting in a decrease in use by wildlife species. Cheyenne Bottoms Wildlife Area, a Wetland of International Importance in central Kansas, has experienced a large increase in cattails and a subsequent decrease in migratory wetland bird use. As a consequence, intensive cattail management is practiced. We assessed the effectiveness of prescribed burning, discing following prescribed burning, and cattle grazing following prescribed burning at two stocking rates of 5 and 20 head per 11 ha in suppressing cattail, as well as the effects of these treatments on non-cattail vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population characteristics of largemouth bass (Micropterous salmoides L.) including growth, body condition (relative weight), size structure, survival, and fecundity were examined in relation to abundance of submersed aquatic vegetation (SAV) coverage (primarily hydrilla Hydrilla verticillata L.f. Royle) in three major embayments of Lake Seminole, Georgia. Relative weight, fecundity, and growth of large-mouth bass in the Spring Creek embayment (76% areal SAV coverage) was considerably less than measured in the Chattahoochee and Flint river arms that contained lower SAV coverages (26% and 32%). It took fish 1.8 years longer to reach 406 mm in Spring Creek compared to the Chattahoochee-Flint arms. Consequently, fish were smaller in Spring Creek than in the Chattahoochee-Flint arms. In addition, due to slower growth rates and lower fecundity-to-body weight relation, we predicted a 47% reduction in total potential ova production in Spring Creek compared to the other two reservoir embayments. The annual survival rate of 3 to 10 year old largemouth bass was higher in Spring Creek (84%) than in the Chattahoochee-Flint arms (72%) and suggested either lower harvest and/or lower accessibility of particularly larger fish to angling in dense vegetation. Contrary to our expectaions, the fit between number-at-age and age in a catch-curve regression was weaker for fish collected in Spring Creek and suggested greater recruitment variability has occurred over time in this highly vegetated embayment. In Lake Seminole, spatial differences in largemouth bass population characterstics were associated with disparate levels of SAV. Our data suggest that a reduction in hydrilla, but maintenance of an intermediate level of SAV in Spring Creek, should improve largermouth bass population in this arm of the reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is the final product of a two-year study conducted for the Office, Chief of Engineers, by the Moss Landing Marine Laboratories, Moss Landing, California, under Contract No. DACW39-74-C-OI51 with the Environmental Effects Laboratory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), Yicksburg, Mississippi. (PDF contains 192 pages)