923 resultados para Vascular endothelium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic stimulation of beta-adrenoceptors with isoproterenol induces alteration of vascular reactivity and increases local proinflammatory cytokines. We investigated whether fenofibrate and pioglitazone, PPAR-alpha and -gamma agonists, respectively, improve the changes in vascular reactivity induced by isoproterenol. Wistar rats received isoproterenol (0.3 mg.kg(-1).day(-1), SC) or vehicle (CT) plus fenofibrate (alpha, 100 mg.kg(-1).day(-1), PO), pioglitazone (gamma, 2.5 mg.kg(-1).day(-1), PO), or water for 7 days. In aortas, isoproterenol treatment enhanced the maximal response (Rmax) to phenylephrine (10(-10) to 10(-4) M) compared to CT as previously demonstrated. The effects of endothelium removal (E-) or L-NAME incubation (100 mu M) on the phenylephrine response were smaller in isoproterenol-treated animals compared to CT while superoxide dismutase (SOD, 150 U/mL) significantly reduced the Rmax to phenylephrine to CT levels. Neither fenofibrate nor pioglitazone changed the effects induced by isoproterenol in aorta. E-, L-NAME, or SOD effects were similar between CT alpha and CT. However, pioglitazone per se increased Rmax to phenylephrine (CT: 59 +/- 4 versus CT gamma: 72 +/- 5 % of contraction to KCl). E- or L-NAME effects were reduced in CT gamma compared to CT, and SOD normalized the altered reactivity to phenylephrine in the CT gamma group. In conclusion, neither fenofibrate nor pioglitazone ameliorates the altered vascular reactivity present in aorta from isoproterenol-treated rats. Moreover, pioglitazone per se induced endothelial dysfunction and increased phenylephrine-induced contraction in aorta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotalus durissus cascavella is a snake that is usually found in the scrublands of northeast Brazil. The components of its venom may have effects on the vascular and renal systems. Recently, a new bradykinin inhibitory peptide has been identified in the venom of the Crotalinae family. The aim of the present study was to investigate the renal and vascular effects of the natriuretic peptide isolated from the venom of Crotalus durissus cascavella (NP2_Casca). The chromatographic profile showed the fractionation of substances identified as convulxin, gyroxin, crotoxin and crotamine, as well as fractions V and VI. The electrophoretic profile of fraction V consisted of several bands ranging from approximately 6 kDa to 13 kDa, while fraction VI showed only two main electrophoretic bands with molecular weights of approximately 6 and 14 kDa. Reverse-phase chromatography showed that NP2_Casca corresponds to about 18% of fraction VI and that this fraction is the main natriuretic peptide. NP2_Casca was compared to other natriuretic peptides from other sources of snake venom. All amino acid sequences that were compared showed a consensus region of XGCFGX, XLDRIX and XSGLGCX. The group treated with NP2-Casca showed an increase in perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. The percent of total and proximal tubular transport of sodium was reduced significantly after administration of the peptide. The mean arterial pressure showed a dose-dependent decrease after infusion of NP2_Casca, and an increase in nitrite production. In the aortic ring assay, NP2_Casca caused a relaxant effect in endothelium-intact thoracic aortic rings precontracted with phenylephrine in the presence and absence of isatin. NP2_Casca failed to relax the aortic rings precontracted with an isosmotic potassium Krebs-Henseleit solution. In conclusion, the natriuretic peptide isolated from Crotalus durissus cascavella venom produced renal and vascular effects. NP2_Casca reduced total and proximal sodium tubular transport, leading to an increase in sodium excretion, thereby demonstrating a diuretic action. A hypotensive effect was displayed in an arterial pressure assay, with an increase in nitrite production, suggesting a possible vasoactive action. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there are reports concerning a vascular adaptive response to stress in males, this is not yet defined in females. The aim of this study was to delineate functional gender differences in the rat vascular adaptive response to stress and to determine the ability of sex hormones to modulate the stress-induced vascular adaptive response. Responses to noradrenaline were evaluated in aortas, with and without endothelium, from intact, gonadectomized and gonadectomized-hormone-replaced males and females submitted or not to stress (2-h immobilization). Reactivity of the aorta of stressed and non-stressed intact males and females (n = 6-14 per group) was also examined in the presence of L-NAME or indomethacin. Stress decreased and gonadectomy increased maximal responses to noradrenaline in aortas with intact endothelium from both genders. Stress also reduced noradrenaline potency in males. In females, but not males, stress decreased the gonadectomy-induced noradrenaline hyper-reactivity to near that of intact non-stressed rats. Hormone replacement restored the gonadectomy-induced impaired vascular adaptive response to stress. L-NAME, but not indomethacin, abolished the stress-induced decrease in aorta reactivity of males and females. None of the procedures altered reactivity of aortas denuded of endothelium. Conclusion: Stress-induced vascular adaptive responses show gender differences. The magnitude of the adaptive response is dependent on testicular hormones and involves endothelial nitric oxide-system hyperactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The objective was to determine whether nitric oxide participates in stress adaptive responses. Acute stress (AS) decreased endothelium-dependent vasoconstriction to noradrenaline (NA) in rat aorta [control rat (CR) 3.90+/-0.18, n=22; AS 2.76+/-0.20, n=13; P<0.05].2. Chronic stress exposure previous to AS (CS) potentiated this effect [CS 1.93+/-0.19; n=9; P<0.05 related to CR, P<0.05 related to AS].3. Methylene blue and N-G monomethyl-L-arginine, but not indomethaein, restored the decreased aorta reactivity to NA. 4. No reactivity alteration was observed in aorta without endothelium either in both stress conditions or in the presence of inhibitors. These data show that the nitric oxide participates in stress responses. (C) 1998 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term propranolol treatment reduces arterial blood pressure in hypertensive individuals mainly by reducing peripheral vascular resistance, but mechanisms underlying their vasodilatory effect remain poorly investigated. This study aimed to investigate whether long-term propranolol administration ameliorates the impairment of relaxing responses of aorta and mesenteric artery from rats made hypertensive by chronic nitric oxide (NO) deficiency, and underlying mechanisms mediating this phenomenon. Male Wistar rats were treated with N-omega-Nitro-L-arginine methyl ester (L-NAME; 20 mg/rat/day) for four weeks. DL-Propranolol (30 mg/rat/day) was given concomitantly to L-NAME in the drinking water. Treatment with L-NAME markedly increased blood pressure, an effect largely attenuated by DL-propranolol. In phenylephrine-precontracted aortic rings, the reduction of relaxing responses for acetylcholine (0.001-10 mu M) in L-NAME group was not modified by DL-propranolol, whereas in mesenteric rings the impairment of acetylcholine-induced relaxation by L-NAME was significantly attenuated by DL-propranolol. In mesenteric rings precontracted with KCl (80 MM), DL-propranolol failed to attenuate the impairment of acetylcholine-induced relaxation by L-NAME. The contractile responses to extracellular CaCl2 (1-10 mM) were increased in L-NAME group, and co-treatment with DL-propranolol reduced this response in both preparations in most Ca2+ concentrations used. The NO2/NO3 plasma levels and superoxide dismutase (SOD) activity were reduced in L-NAME-treated rats, both of which were significantly prevented by DL-propranolol. In conclusion, propranolol-induced amplification of the relaxation to acetylcholine in mesenteric arteries from L-NAME-treated rats is sensitive to depolarization. Additional mechanisms involving blockade of Ca2+ entry in the vascular smooth muscle and increase in NO bioavailability contributes to beneficial effects of long-term propranolol treatment. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress-induced vascular adaptive response in SHR was investigated, focusing on the endothelium. Noradrenaline responses were studied in intact and denuded aortas from 6-week-old (prehypertensive) and 14-week-old (hypertensive) SHR and age-matched Wistar rats submitted or not to acute stress (20-min swimming and I-h immobilization 25 min apart), preceded or not by chronic stress (2 sessions 2 days apart of 1-h day immobilization for 5-consecutive days). Stress did not alter the reactivity of denuded aorta. Moreover, no alteration in the EC50 values was observed after stress exposure. In intact aortas, acute stress-induced hyporeactivity to noradrenaline similar between strains at both age. Chronic stress potentiated this adaptive response in 6- and 14-week-old Wistar but not in 6-week-old SHR, and did not alter the reactivity of 14-week-old SHR. Maximum response (g) in intact aortas [6-week-old: Wistar 3.25 +/- 0.12, Wistar/acute 1.95 +/- 0.12*, Wistar/chronic 1.36 +/- 0.21*(+), SHR 1.75 +/- 0.11, SHR/acute 0.88 +/- 0.08*, SHR/chronic 0.85 +/- 0.05*; 14-week-old: Wistar 3.83 +/- 0.13, Wistar/acute 2.72 +/- 0.13*, Wistar/chronic 1.91 +/- 0.19*', SHR 4.03 +/- 0.17, SHR/acute 2.26 +/- 0.12*, SHR/chronic 4.10 +/- 0.23; inside the same strain: *P < 0.05 relate to non-stressed rat, (+)P < 0.05 related to acute stressed rat; n = 6-18]. Independent of age and strain, L-NAME and endothelium removal abolished the stress-induced aorta hyporeactivity. Conclusion: the vascular adaptive response to stress is impaired in SHR, independently of the hypertensive state. Moreover, this vascular adaptive response is characterized by endothelial nitric oxide-system hyperactivity in both strains. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. Methods: Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. Results: The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. Conclusions: Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation. © 2013 Society for Vascular Surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)