960 resultados para Variable gain amplifier (VGA)
Resumo:
We demonstrate 40x43Gbit/s RZ-DQPSK transmission over 1000km of ultra-low-loss G.652 fibre with 250km amplifier spacing. Hybrid Raman-EDFA amplification with co- and contra-directional Raman pumping enables 27dB Raman gain per span and error-free post-FEC performance. ©2010 IEEE.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
Nonlinear CW pump broadening over non-standard transmission fibre is used for the first time to achieve improved gain flatness in a single-pump broadband Raman amplifier. As an illustration of the benefits that can be obtained from this approach, a threefold increase in the bandwidth for 0.1 dB gain variation is reported when the broadened pump is used to produce 9.2 dB on-off gain over 25 km LEAF fibre. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the energy optimization (minimization) for amplified links. We show that using the using a well-established analytic nonlinear signal-to-noise ratio noise model that for a simple amplifier model there are very clear, fiber independent, amplifier gains which minimize the total energy requirement. With a generalized amplifier model we establish the spacing for the optimum power per bit as well as the nonlinear limited optimum power. An amplifier spacing corresponding to 13 dB gain is shown to be a suitable compromise for practical amplifiers operating at the optimum nonlinear power. © 2014 Optical Society of America.
Resumo:
The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.
Resumo:
A travelling-wave model of a semiconductor optical amplifier based non-linear loop mirror is developed to investigate the importance of travelling-wave effects and gain/phase dynamics in predicting device behaviour. A constant effective carrier recovery lifetime approximation is found to be reasonably accurate (±10%) within a wide range of control pulse energies. Based on this approximation, a heuristic model is developed for maximum computational efficiency. The models are applied to a particular configuration involving feedback.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.
Resumo:
We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 μm without pulse compression, external cavity, gain-or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps.
Resumo:
WDM signal degradation from pump phase-modulation in a one-pump 20dB net-gain fibre optical parametric amplifier is experimentally and numerically characterised for the first time using 10x59Gb/s QPSK signals.
Resumo:
We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.
Resumo:
Stochastic anti-resonance, that is resonant enhancement of randomness caused by polarization mode beatings, is analyzed both numerically and analytically on an example of fibre Raman amplifier with randomly varying birefringence. As a result of such anti-resonance, the polarization mode dispersion growth causes an escape of the signal state of polarization from a metastable state corresponding to the pulling of the signal to the pump state of polarization.This phenomenon reveals itself in abrupt growth of gain fluctuations as well as in dropping of Hurst parameter and Kramers length characterizing long memory in a system and noise induced escape from the polarization pulling state. The results based on analytical multiscale averaging technique agree perfectly with the numerical data obtained by direct numerical simulations of underlying stochastic differential equations. This challenging outcome would allow replacing the cumbersome numerical simulations for real-world extra-long high-speed communication systems.
Resumo:
We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.
Resumo:
The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.
Resumo:
In this paper, a new bidirectional pumping scheme with dual order forward pumps is proposed. Performance is compared numerically with conventional bidirectional and backward only pumping schemes for a 70 nm bandwidth, 61.5 km distributed Raman amplifier. We demonstrate that it is possible to design a flat gain spectrum with improved noise figure and OSNR, as well as a low gain ripple (<1 dB).
Resumo:
The mixing regime of the upper 180 m of a mesoscale eddy in the vicinity of the Antarctic Polar Front at 47° S and 21° E was investigated during the R.V. Polarstern cruise ANT-XVIII/2 within the scope of the iron fertilization experiment EisenEx. On the basis of hydrographic CTD and ADCP profiles we deduced the vertical diffusivity Kz from two different parameterizations. Since these parameterizations bear the character of empirical functions, based on theoretical and idealized assumptions, they were inter alia compared with Cox-number and Thorpe-scale related diffusivities deduced from microstructure measurements, which supplied the first direct insights into turbulence of this ocean region. Values of Kz in the range of 10**-4 - 10**-3 m**2/s appear as a rather robust estimate of vertical diffusivity within the seasonal pycnocline. Values in the mixed layer above are more variable in time and reach 10**-1 m**2/s during periods of strong winds. The results confirm a close agreement between the microstructure-based eddy diffusivities and eddy diffusivities calculated after the parameterization of Pacanowski and Philander [1981, Journal of Physical Oceanography 11, 1443-1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2].