635 resultados para Vanishing Theorems
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Resumo:
We consider a model where sterile neutrinos can propagate in a large compactified extra dimension giving rise to Kaluza-Klein (KK) modes and the standard model left-handed neutrinos are confined to a 4-dimensional spacetime brane. The KK modes mix with the standard neutrinos modifying their oscillation pattern. We examine former and current experiments such as CHOOZ, KamLAND, and MINOS to estimate the impact of the possible presence of such KK modes on the determination of the neutrino oscillation parameters and simultaneously obtain limits on the size of the largest extra dimension. We found that the presence of the KK modes does not essentially improve the quality of the fit compared to the case of the standard oscillation. By combining the results from CHOOZ, KamLAND, and MINOS, in the limit of a vanishing lightest neutrino mass, we obtain the stronger bound on the size of the extra dimension as similar to 1.0(0.6) mu m at 99% C.L. for normal (inverted) mass hierarchy. If the lightest neutrino mass turns out to be larger, 0.2 eV, for example, we obtain the bound similar to 0.1 mu m. We also discuss the expected sensitivities on the size of the extra dimension for future experiments such as Double CHOOZ, T2K, and NO nu A.
Resumo:
We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.
Resumo:
Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.
Resumo:
We have analyzed a large set of alpha + alpha elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even in this low-energy region, the velocity dependence of the model is quite important for describing the data of the alpha + alpha system.
Resumo:
The transition of plasmons from propagating to localized state was studied in disordered systems formed in GaAs/AlGaAs superlattices by impurities and by artificial random potential. Both the localization length and the linewidth of plasmons were measured by Raman scattering. The vanishing dependence of the plasmon linewidth on the disorder strength was shown to be a manifestation of the strong plasmon localization. The theoretical approach based on representation of the plasmon wave function in a Gaussian form well accounted for by the obtained experimental data.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
In this work we study some properties of the differential complex associated to a locally integrable (involutive) structure acting on forms with Gevrey coefficients. Among other results we prove that, for such complexes, Gevrey solvability follows from smooth solvability under the sole assumption of a regularity condition. As a consequence we obtain the proof of the Gevrey solvability for a first order linear PDE with real-analytic coefficients satisfying the Nirenberg-Treves condition (P).
Resumo:
We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.
Resumo:
The dynamic plastic response of a simply supported circular plate is analysed. Emphasis is given to the plate behaviour after it has broken free from the supports due to a local material failure. The theoretical rigid plastic analysis predicts various features of the response such as the time to failure, residual kinetic energy and the critical velocity at failure. The residual kinetic energy of the plate could be significant enough to cause secondary impact damage. It is shown that the shape of the plate changes after breaking free from the supports, which is important for forensic investigations. The solution for various cases were proven to be exact in the context of the upper and lower bounds theorems of the theory of plasticity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.
Resumo:
We study the index of refraction of a two-level atom replacing the usually applied coherent driving fields by a squeezed vacuum field. This system can produce a large index of refraction accompanied by vanishing absorption when the carrier frequency of the squeezed vacuum is detuned from the atomic resonance. (C) 1998 Elsevier Science B.V.
Resumo:
The resonance fluorescence of a two-level atom driven by a coherent laser field and damped by a finite bandwidth squeezed vacuum is analysed. We extend the Yeoman and Barnett technique to a non-zero detuning of the driving field from the atomic resonance and discuss the role of squeezing bandwidth and the detuning in the level shifts, widths and intensities of the spectral lines. The approach is valid for arbitrary values of the Rabi frequency and detuning but for the squeezing bandwidths larger than the natural linewidth in order to satisfy the Markoff approximation. The narrowing of the spectral lines is interpreted in terms of the quadrature-noise spectrum. We find that, depending on the Rabi frequency, detuning and the squeezing phase, different factors contribute to the line narrowing. For a strong resonant driving field there is no squeezing in the emitted field and the fluorescence spectrum exactly reveals the noise spectrum. In this case the narrowing of the spectral lines arises from the noise reduction in the input squeezed vacuum. For a weak or detuned driving field the fluorescence exhibits a large squeezing and, as a consequence, the spectral lines have narrowed linewidths. Moreover, the fluorescence spectrum can be asymmetric about the central frequency despite the symmetrical distribution of the noise. The asymmetry arises from the absorption of photons by the squeezed vacuum which reduces the spontaneous emission. For an appropriate choice of the detuning some of the spectral lines can vanish despite that there is no population trapping. Again this process can be interpreted as arising from the absorption of photons by the squeezed vacuum. When the absorption is large it may compensate the spontaneous emission resulting in the vanishing of the fluorescence lines.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.