969 resultados para Vaccine (maladie) -- Vaccination
Resumo:
Vaccination in HIV-infected children is often less effective than in healthy children. The goal of this study was to assess vaccine responses to hepatitis A virus (HAV) in HIV-infected children. Children of the Swiss Mother and Child HIV Cohort Study (MoCHiV) were enrolled prospectively. Recommendations for initial, catch-up, and additional HAV immunizations were based upon baseline antibody concentrations and vaccine history. HAV IgG was assessed by enzyme-linked immunosorbent assay (ELISA) with a protective cutoff value defined as ≥10 mIU/ml. Eighty-seven patients were included (median age, 11 years; range, 3.4 to 21.2 years). Forty-two patients were seropositive (48.3%) for HAV. Among 45 (51.7%) seronegative patients, 36 had not received any HAV vaccine dose and were considered naïve. Vaccine responses were assessed after the first dose in 29/35 naïve patients and after the second dose in 33/39 children (25 initially naïve patients, 4 seronegative patients, and 4 seropositive patients that had already received 1 dose of vaccine). Seroconversion was 86% after 1 dose and 97% after 2 doses, with a geometric mean concentration of 962 mIU/ml after the second dose. A baseline CD4(+) T cell count below 750 cells/μl significantly reduced the post-2nd-dose response (P = 0.005). Despite a high rate of seroconversion, patients with CD4(+) T cell counts of <750/μl had lower anti-HAV antibody concentrations. This may translate into a shorter protection time. Hence, monitoring humoral immunity may be necessary to provide supplementary doses as needed.
Resumo:
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Resumo:
Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease.
Resumo:
The Oswaldo Cruz Foundation produces most of the yellow fever (YF) vaccine prepared world wide. As part of a broader approach to determine the genetic variability in YF l7D seeds and vaccines and its relevance to viral attenuation the 17DD virus was purifed directly from chick embryo homogenates which is the source of virus used for vaccination of millions of people in Brazil and other countries for half a century. Neutralization and hemagglutination tests showed that the purified virus is similar to the original stock. Furthermore, radioimmune precipitation of 35S-methionine-labeled viral proteins using mouse hyperimmune ascitic fluid revealed identical patterns for the purified 17DD virus and the YF l7D-204 strain except for the 17DD E protein which migrated slower on SDS-PAGE. This difference is likely to be due to N-linked glycosylation. Finally, comparison by northern blot nybridization of virion RNAs of purified 17DD with two other strains of YF virus only fenome-sized molecules for all three viruses. These observations suggest that vaccine phenotype is primarily associated with the accumulation of mutations.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
Different patterns of cutaneous leishmaniasis can be induced when a challenge of alike dose of Leishmania amazonensis amastigotes in various inbred strains was applied. Two strains of mice, the Balb/c and C57 BL/10J, showed exceptional suscepbility, and 10(elevado a sexta potência) amastigotes infective dose lead, to ulcerative progressive lesions with cutaneous metastasis and loss by necrosis of leg on wich the footpad primary lesion occured. Lesions were also progressive but in a lower degree when C3H/HeN and C57BL/6 were infected. Lesions progress slowly in DBA/2 mice presenting lesions wich reach a discreet peack after 12 weeks, do not heal but do not uncerate. DBA/2 mice is, therefore, a good model for immunomodualtion. In attempt to determine the influence of BCG in vaccination schedule using microsomal fraction, DBA/2 became an excellent model, since it is also a non-responder to BCG. Vaccination of DBA/2 mice, receiving the same 10(elevado a sexta potência) BCG viable dose and 10 *g or 50 *g of protein content of microsomal fraction, lead to a progressive disease with time course similar to those observed in susceptible non-vaccinated C57BL/10J mice after 6 months of observation. An enhancement of infection in BCG non-responder mice suggests that use of BCG as immunostimulant in humans could be critical for both vaccination and immunoprophylactic strategies.
Resumo:
Bovine babesiosis is endemic in Venezuela, causing significant losses in highly susceptible imported cattle. Current immunoprphylatic methods include the less desirable use of live parasites. Inactivated vaccines derived from exoantigen-containing supernatant fluids of in vitro Babesia bovis and B. bigemina cultures have been developed and constitute a major improvement in vaccine safety, stability and ease of handling. Vaccination trials conducted under field conditions provide the final evaluation of a culture-derived B. bovis-B. bigemina vaccine. During a 5-year period, approximately 8,000 cattle were vaccinated and 16 clinical trials carried out in. 7 states of Venezuela Clinical, serologic and parasitologic data were collected monthly from 10% of the animals over a 2-year period. Data were also collected from a similar number of nonvaccinated control cattle. Analysis of results from these trials demonstrated a reduction in the incidence of clinical disease among vaccinated animals and complete protection against mortality among vaccinated and nonvaccinated cattle. Use of this inactivated vaccine offers the best combination od safety, potency and efficacy for thew immunoprophylatic control of bovine babesiosis.
Resumo:
Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.
Resumo:
Schistosomiasis, the second major parasitic disease in the world after malaria affects at least 200 million people, 500 million being exposed to the risk of infection. It is widely agreed that a vaccine strategy wich could lead to the induction of effector mechanisms reducing the level of reinfection and ideally parasite fecundity would deeply affect the incidence of pathological manifestations as well as the parasite transmission potentialities. Extensive studies performed in the rat model have allowed the identification of novel effector mechanisms involving IgE antibodies and various inflammatory cell populations (eosinophils, macrophages and platelets) whereas regulation of immune response by blocking antibodies has been evidencial. Recent epidemiological studies have now entirely confirmed in human populations the the role of IgE antibodies in the acquisition of resistance and the association of IgG4 blocking antibodies with increased susceptibility. On the basis of these concepts, several schistosome glutathion S-transferase (Sm 28 GST) appears as a pronising vaccine candidate. Immunization experiments have shown that two complementary goals can be achieved: (a) a partial but significant reduction of the worm population (up to 60//in rats); (b) a significant reduction of parasite fecundity (up in the mice and 85//in cattle) and egg viability (up to 80//). At least two distinct immunological mechanisms account for these two effects. IgE antibodies appear as a major humoral component of acquired resistance whereas IgA antibodies appear as a major humoral factor affecting parasite fecundity. These studies seem to represent a parasite diseases through the identification of potentially protective antigens and of the components of the immune response which vaccination should aim at inducing.
Resumo:
We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.
Resumo:
The notes provided in this article relate to two components of the development of vaccines against schistosomiasis: (1) The characteristics of schistosome infections (eg. features of the schistosome life cycle), and the parasite itself, that have implications for vaccination strategies; (2) The characteristics of the biopharmaceutical industry that have implications for product development. As will be seen, these two topic areas are not vastly disparate.
Resumo:
Mounting evidence for acquired immunity to schistosomiasis in humans supports the case for immunological intervention. On the other hand, rapid reinfection poses a threat to younger age groups due to the slow maturation of natural resistance. However, rational approaches, based on advances in immunology and molecular biology, have substantially increased the odds of producing an effective vaccine. Since the parasite cannot replicate in the human host and serious morbidity generally occurs only after a relatively long period of heavy worm burden, complete protection against infection is not essential. The chances of success would increase if more than one of the various host/parasite interphases were targeted, for example reducing morbidity through decreased worm loads as well as through suppression of egg production. Several promising schistosome antigens have now reached an advanced phase of development and are currently undergoing independent confirmatory testing according to a standardized protocol. A few molecules are being contemplated for scaled-up production but, so far, only one has reached the stage of industrial manufacture and safety testing. Since schistosomiasis cannot realistically be controlled by a single approach, vaccination is envisaged to be implemented in conjunction with other means of control, notably chemotherapy.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
Patients with stage I-III melanoma were vaccinated with the modified HLA-A2-binding gp100(209-2M)-peptide after complete surgical resection of their primary lesion and sentinel node biopsy. Cytoplasmic interferon-gamma production by freshly thawed peripheral blood mononuclear cells (direct ex vivo analysis) or by peripheral blood mononuclear cells subjected to 1 cycle of in vitro sensitization with peptide, interleukin-2, and interleukin-15 was measured following restimulation with the modified and native gp100 peptides, and also A2gp100 melanoma cell lines. Peptide-reactive and tumor-reactive T cells were detected in 79% and 66% of selected patients, respectively. Patients could be classified into 3 groups according to their vaccine-elicited T-cell responses. One group of patients responded only to the modified peptide used for immunization, whereas another group of patients reacted to both the modified and native gp100 peptides, but not to naturally processed gp100 antigen on melanoma cells. In the third group of patients, circulating CD8 T cells recognized A2gp100 melanoma cell lines and also both the modified and native peptides. T cells with a low functional avidity, which were capable of lysing tumor cells only if tumor cells were first pulsed by the exogenous administration of native gp100(209-217) peptide were identified in most patients. These results indicate that vaccination with a modified gp100 peptide induced a heterogeneous group of gp100-specific T cells with a spectrum of functional avidities; however, high avidity, tumor-reactive T cells were detected in the majority of patients.