992 resultados para VISIBLE SPECTRA
Resumo:
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
Resumo:
A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%
Resumo:
Human hair is a relatively inert biopolymer and can survive through natural disasters. It is also found as trace evidence at crime scenes. Previous studies by FTIRMicrospectroscopy and – Attenuated Total Reflectance (ATR) successfully showed that hairs can be matched and discriminated on the basis of gender, race and hair treatment, when interpreted by chemometrics. However, these spectroscopic techniques are difficult to operate at- or on-field. On the other hand, some near infrared spectroscopic (NIRS) instruments equipped with an optical probe, are portable and thus, facilitate the on- or at –field measurements for potential application directly at a crime or disaster scene. This thesis is focused on bulk hair samples, which are free of their roots, and thus, independent of potential DNA contribution for identification. It explores the building of a profile of an individual with the use of the NIRS technique on the basis of information on gender, race and treated hair, i.e. variables which can match and discriminate individuals. The complex spectra collected may be compared and interpreted with the use of chemometrics. These methods can then be used as protocol for further investigations. Water is a common substance present at forensic scenes e.g. at home in a bath, in the swimming pool; it is also common outdoors in the sea, river, dam, puddles and especially during DVI incidents at the seashore after a tsunami. For this reason, the matching and discrimination of bulk hair samples after the water immersion treatment was also explored. Through this research, it was found that Near Infrared Spectroscopy, with the use of an optical probe, has successfully matched and discriminated bulk hair samples to build a profile for the possible application to a crime or disaster scene. Through the interpretation of Chemometrics, such characteristics included Gender and Race. A novel approach was to measure the spectra not only in the usual NIR range (4000 – 7500 cm-1) but also in the Visible NIR (7500 – 12800 cm-1). This proved to be particularly useful in exploring the discrimination of differently coloured hair, e.g. naturally coloured, bleached or dyed. The NIR region is sensitive to molecular vibrations of the hair fibre structure as well as that of the dyes and damage from bleaching. But the Visible NIR region preferentially responds to the natural colourants, the melanin, which involves electronic transitions. This approach was shown to provide improved discrimination between dyed and untreated hair. This thesis is an extensive study of the application of NIRS with the aid of chemometrics, for matching and discrimination of bulk human scalp hair. The work not only indicates the strong potential of this technique in this field but also breaks new ground with the exploration of the use of the NIR and Visible NIR ranges for spectral sampling. It also develops methods for measuring spectra from hair which has been immersed in different water media (sea, river and dam)
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.
Resumo:
Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.
Resumo:
Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.
Resumo:
Porphyrins are one of Nature’s essential building blocks that play an important role in several biological systems including oxygen transport, photosynthesis, and enzymes. Their capacity to absorb visible light, facilitate oxidation and reduction, and act as energy- and electron-transfer agents, in particular when several are held closely together, is of interest to chemists who seek to mimic Nature and to make and use these compounds in order to synthesise novel advanced materials. During this project 26 new 5,10-diarylsubstituted porphyrin monomers, 10 dimers, and 1 tetramer were synthesised. The spectroscopic and structural properties of these compounds were investigated using 1D/2D 1H NMR, UV/visible, ATR-IR and Raman spectroscopy, mass spectrometry, X-ray crystallography, electrochemistry and gel permeation chromatography. Nitration, amination, bromination and alkynylation of only one as well as both of the meso positions of the porphyrin monomers have resulted in the expansion of the synthetic possibilities for the 5,10-diarylsubstituted porphyrins. The development of these new porphyrin monomers has led to the successful synthesis of new azo- and butadiyne-linked dimers. The functionalisation of these compounds was investigated, in particular nitration, amination, and bromination. The synthesised dimers containing the azo bridge have absorption spectra that show a large split in the Soret bands and intense Q-bands that have been significantly redshifted. The butadiyne dimers also have intense, red-shifted Q-bands but smaller Soret band splittings. Crystal structures of two new azoporphyrins have been acquired and compared to the azoporphyrin previously synthesised from 5,10,15- triarylsubstituted porphyrin monomers. A completely new cyclic porphyrin oligomer (CPO) was synthesised comprising four porphyrin monomers linked by azo and butadiyne bridges. This is the first cyclic tetramer that has both the azo and butadiyne linking groups. The absorption spectrum of the tetramer exhibits a large Soret split making it more similar to the azo- dimers than the butadiyne-linked dimers. The spectroscopic characteristics of the synthesised tetramer have been compared to the characteristics of other cyclic porphyrin tetramers. The collected data indicate that the new synthesised cyclic tetramer has a more efficient ð-overlap and a better ground state electronic communication between the porphyrin rings.
Resumo:
The SER spectra of riboflavin and FAD are identical and are resonance enhanced at 514 or 532 nm. Signals from FAD/ riboflavin dominated SER spectra whenever these compounds were present with proteins or bacteria. SER spectra of very different bacteria such as Pseudomonas. aeruginosa, Bacillu. subtilis and Geobacillus. stearothermophilus were dominated by signals from FAD, even when these bacteria were added to a preformed colloid. The SERS signal of FAD is greatly reduced at 785 nm, and SER spectra of bacteria excited at 785 nm are quite different than those collected at 514 or 532 nm. This supports the assignment of the peaks in the 514 nm SER spectra of bacteria to FAD rather to amino acids or N-acetylglucosamine. The SER spectra of certain mixes of adenine and FAD showed similar changes to those of bacteria when the excitation was changed from 514/532 nm to 785 nm. The ratio of colloid: bacteria was of critical important for obtaining good SER spectra, and the addition of sodium sulfate was also beneficial. Removal of EPS from bacteria before analysis facilitated interaction with the silver surface, and may be a useful step to include in identification protocols.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
At QUT research data refers to information that is generated or collected to be used as primary sources in the production of original research results, and which would be required to validate or replicate research findings (Callan, De Vine, & Baker, 2010). Making publicly funded research data discoverable by the broader research community and the public is a key aim of the Australian National Data Service (ANDS). Queensland University of Technology (QUT) has been innovating in this space by undertaking mutually dependant technical and content (metadata) focused projects funded by ANDS. Research Data Librarians identified and described datasets generated from Category 1 funded research at QUT, by interviewing researchers, collecting metadata and fashioning metadata records for upload to the Australian Research Data commons (ARDC) and exposure through the Research Data Australia interface. In parallel to this project, a Research Data Management Service and Metadata hub project were being undertaken by QUT High Performance Computing & Research Support specialists. These projects will collectively store and aggregate QUT’s metadata and research data from multiple repositories and administration systems and contribute metadata directly by OAI-PMH compliant feed to RDA. The pioneering nature of the work has resulted in a collaborative project dynamic where good data management practices and the discoverability and sharing of research data were the shared drivers for all activity. Each project’s development and progress was dependent on feedback from the other. The metadata structure evolved in tandem with the development of the repository and the development of the repository interface responded to meet the needs of the data interview process. The project environment was one of bottom-up collaborative approaches to process and system development which matched top-down strategic alliances crossing organisational boundaries in order to provide the deliverables required by ANDS. This paper showcases the work undertaken at QUT, focusing on the Seeding the Commons project as a case study, and illustrates how the data management projects are interconnected. It describes the processes and systems being established to make QUT research data more visible and the nature of the collaborations between organisational areas required to achieve this. The paper concludes with the Seeding the Commons project outcomes and the contribution this project made to getting more research data ‘out there’.