156 resultados para VENTROLATERAL CAUDOPUTAMEN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflarnmatory cytokine interleukin-1beta (1 mug/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report two functional magnetic resonance imaging (fMRI) experiments which reveal a cortical network activated when perceiving coloured grids, and experiencing the McCollough effect (ME). Our results show that perception of red-black and green-black grids activate the right fusiform gyrus (area V4) plus the left and right lingual gyri, right striate cortex (V1) and left insula. The ME activated the left anterior fusiform gyrus as well as the ventrolateral prefrontal cortex, and in common with colour perception, the left insula. These data confirm the critical role of the fusiform gyrus in actual and illusory colour perception as well as revealing localized frontal cortical activation associated with the ME, which would suggest that a 'top-down' mechanism is implicated in this illusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

News & Comment. Many influential models of prefrontal cortex function suggest that activity within this area is often associated with additional activity in posterior regions of the cortex that support perception. The purpose of this cortical ‘coupling’ is to ensure that a perceptual representation is generated and then maintained within the working memory system. Areas in the right ventrolateral prefrontal cortex (vlPFC) and the fusiform gyrus have been implicated as associate areas involved in face processing. In an interesting case study by Vignal, Chauvel and Halgren the functional relationship between these two areas was tested1. In order to confirm the epileptogenic foci prior to resective surgery in a 30-year-old male patient, depth electrodes were implanted into sites around prefrontal, anterior temporal and premotor cortices. While the patient was looking at a blank screen, 50-Hz electrical stimulation of two probes implanted into the right anterior frontal gyrus resulted in the patient’s reporting the perception of a series of colourful faces. These facial hallucinations were described as being ‘…like passing slides, one after the after, linked together’. When asked to look at an actual face during stimulation at the same sites the patient reported transformation of that face (such as appearing without spectacles or with a hat). These findings were related to activity of a cortical network involving the vlPFC and the fusiform gyrus. This paper thus suggests a role in face processing for the vlPFC, evoking working memory processes to maintain facial representations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-criticism is strongly correlated with a range of psychopathologies, such as depression, eating disorders and anxiety. In contrast, self-reassurance is inversely associated with such psychopathologies. Despite the importance of self-judgements and evaluations, little is known about the neurophysiology of these internal processes. The current study therefore used a novel fMRI task to investigate the neuronal correlates of self-criticism and self-reassurance. Participants were presented statements describing two types of scenario, with the instruction to either imagine being self-critical or self-reassuring in that situation. One scenario type focused on a personal setback, mistake or failure, which would elicit negative emotions, whilst the second was of a matched neutral event. Self-criticism was associated with activity in lateral prefrontal cortex (PFC) regions and dorsal anterior cingulate (dAC), therefore linking self-critical thinking to error processing and resolution, and also behavioural inhibition. Self-reassurance was associated with left temporal pole and insula activation, suggesting that efforts to be self-reassuring engage similar regions to expressing compassion and empathy towards others. Additionally, we found a dorsal/ventral PFC divide between an individual's tendency to be self-critical or self-reassuring. Using multiple regression analyses, dorsolateral PFC activity was positively correlated with high levels of self-criticism (assessed via self-report measure), suggesting greater error processing and behavioural inhibition in such individuals. Ventrolateral PFC activity was positively correlated with high self-reassurance. Our findings may have implications for the neural basis of a range of mood disorders that are characterised by a preoccupation with personal mistakes and failures, and a self-critical response to such events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with Bipolar Disorder (BD) perform poorly on tasks of selective attention and inhibitory control. Although similar behavioural deficits have been noted in their relatives, it is yet unclear whether they reflect dysfunction in the same neural circuits. We used functional magnetic resonance imaging and the Stroop Colour Word Task to compare task related neural activity between 39 euthymic BD patients, 39 of their first-degree relatives (25 with no Axis I disorders and 14 with Major Depressive Disorder) and 48 healthy controls. Compared to controls, all individuals with familial predisposition to BD, irrespective of diagnosis, showed similar reductions in neural responsiveness in regions involved in selective attention within the posterior and inferior parietal lobules. In contrast, hypoactivation within fronto-striatal regions, implicated in inhibitory control, was observed only in BD patients and MDD relatives. Although striatal deficits were comparable between BD patients and their MDD relatives, right ventrolateral prefrontal dysfunction was uniquely associated with BD. Our findings suggest that while reduced parietal engagement relates to genetic risk, fronto-striatal dysfunction reflects processes underpinning disease expression for mood disorders. © 2011 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. Method - We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Results - Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Conclusions - Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity. © 2010 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Bipolar disorder is associated with dysfunction in prefrontal and limbic areas implicated in emotional processing. Aims: To explore whether lamotrigine monotherapy may exert its action by improving the function of the neural network involved in emotional processing. Method: We used functional magnetic resonance imaging to examine changes in brain activation during a sad facial affect recognition task in 12 stable patients with bipolar disorder when medication-free compared with healthy controls and after 12 weeks of lamotrigine monotherapy. Results: At baseline, compared with controls, patients with bipolar disorder showed overactivity in temporal regions and underactivity in the dorsal medial and right ventrolateral prefrontal cortex, and the dorsal cingulate gyrus. Following lamotrigine monotherapy, patients demonstrated reduced temporal and increased prefrontal activation. Conclusions: This preliminary evidence suggests that lamotrigine may enhance the function of the neural circuitry involved in affect recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventrolateral prefrontal cortex (vlPFC) has been implicated in studies of both executive and social functions. Recent meta-analyses suggest that vlPFC plays an important but little understood role in Theory of Mind (ToM). Converging neuropsychological and functional Magnetic Resonance Imaging (fMRI) evidence suggests that this may reflect inhibition of self-perspective. The present study adapted an extensively published ToM localizer to evaluate the role of vlPFC in inhibition of self-perspective. The classic false belief, false photograph vignettes that comprise the localizer were modified to generate high and low salience of self-perspective. Using a factorial design, the present study identified a behavioural and neural cost associated with having a highly salient self-perspective that was incongruent with the representational content. Importantly, vlPFC only differentiated between high versus low salience of self-perspective when representing mental state content. No difference was identified for non-mental representation. This result suggests that different control processes are required to represent competing mental and non-mental content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM.