915 resultados para Uncertainty in Illness Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider model selection uncertainty in linear regression. We study theoretically and by simulation the approach of Buckland and co-workers, who proposed estimating a parameter common to all models under study by taking a weighted average over the models, using weights obtained from information criteria or the bootstrap. This approach is compared with the usual approach in which the 'best' model is used, and with Bayesian model averaging. The weighted predictor behaves similarly to model averaging, with generally more realistic mean-squared errors than the usual model-selection-based estimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of “testing laboratory” one of the most important aspect to deal with is the measurement result. Whenever decisions are based on measurement results, it is important to have some indication of the quality of the results. In every area concerning with noise measurement many standards are available but without an expression of uncertainty, it is impossible to judge whether two results are in compliance or not. ISO/IEC 17025 is an international standard related with the competence of calibration and testing laboratories. It contains the requirements that testing and calibration laboratories have to meet if they wish to demonstrate that they operate to a quality system, are technically competent and are able to generate technically valid results. ISO/IEC 17025 deals specifically with the requirements for the competence of laboratories performing testing and calibration and for the reporting of the results, which may or may not contain opinions and interpretations of the results. The standard requires appropriate methods of analysis to be used for estimating uncertainty of measurement. In this point of view, for a testing laboratory performing sound power measurement according to specific ISO standards and European Directives, the measurement of uncertainties is the most important factor to deal with. Sound power level measurement, according to ISO 3744:1994 , performed with a limited number of microphones distributed over a surface enveloping a source is affected by a certain systematic error and a related standard deviation. Making a comparison of measurement carried out with different microphone arrays is difficult because results are affected by systematic errors and standard deviation that are peculiarities of the number of microphones disposed on the surface, their spatial position and the complexity of the sound field. A statistical approach could give an overview of the difference between sound power level evaluated with different microphone arrays and an evaluation of errors that afflict this kind of measurement. Despite the classical approach that tend to follow the ISO GUM this thesis present a different point of view of the problem related to the comparison of result obtained from different microphone arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To check the effectiveness of campaigns preventing drug abuse or indicating local effects of efforts against drug trafficking, it is beneficial to know consumed amounts of substances in a high spatial and temporal resolution. The analysis of drugs of abuse in wastewater (WW) has the potential to provide this information. In this study, the reliability of WW drug consumption estimates is assessed and a novel method presented to calculate the total uncertainty in observed WW cocaine (COC) and benzoylecgonine (BE) loads. Specifically, uncertainties resulting from discharge measurements, chemical analysis and the applied sampling scheme were addressed and three approaches presented. These consist of (i) a generic model-based procedure to investigate the influence of the sampling scheme on the uncertainty of observed or expected drug loads, (ii) a comparative analysis of two analytical methods (high performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry), including an extended cross-validation by influent profiling over several days, and (iii) monitoring COC and BE concentrations in WW of the largest Swiss sewage treatment plants. In addition, the COC and BE loads observed in the sewage treatment plant of the city of Berne were used to back-calculate the COC consumption. The estimated mean daily consumed amount was 107 ± 21 g of pure COC, corresponding to 321 g of street-grade COC.