954 resultados para Ultrashort pulsed laser beams


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial thin films Of various bismuth-layered perovskites SrBi(2)Ta(2)O(9), Bi(4)Ti(3)O(12), BaBi(4)Ti(4)O(15), and Ba(2)Bi(4)Ti(5)O(18) were deposited by pulsed laser deposition onto epitaxial conducting LaNiO(3) or SrRuO(3) electrodes on single crystalline SrTiO(3) substrates with different crystallographic orientations or on top of epitaxial buffer layers on (100) silicon. The conductive perovskite electrodes and the epitaxial ferroelectric films are strongly influenced by the nature of the substrate, and bismuth-layered perovskite ferroelectric films with mixed (100), (110)- and (001)-orientations as well as with uniform (001)-, (116)- and (103)- orientations have been obtained. Structure and morphology investigations performed by X-ray diffraction analysis, scanning probe microscopy, and transmission electron microscopy reveal the different epitaxial relationships between films and substrates. A clear correlation of the crystallographic orientation of the epitaxial films with their ferroelectric properties is illustrated by macroscopic and microscopic measurements of epitaxial bismuth-layered perovskite thin films of different crystallographic orientations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of depositing thin films by the use of pulsed laser deposition (PLD) has become a more widely used technique for the growth of substances in a thin film form. Pulsed laser deposition allows for the stoichiometric film growth of the target which is of great significance in the deposition of High Temperature Superconducting materials. We will describe a system designed using an excimer laser and vaccum chamber in which thin films and superlattices of YBa2Cuj07_i, PrBa2Cu307_i, and YBajCujOr-j/ PrBajCusOr-^ were deposited on SrTiOs. Results of resistivity measurements using the four probe technique will be shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SrMg^Rui-iOa thin films were made by using pulsed laser deposition on SrTiOa (100) substrates in either O2 or Ar atmosphere. The thin films were characterized by x-ray diffraction, energy dispersive x-ray microanalysis, dc resistivity measurement, and dc magnetization measurement. The effect of Mg doping was observed. As soon as the amount of Mg increased in SrMg-cRui-iOa thin films, the magnetization decreased, and the resistivity increased. It had little effect on the Curie temperature (transition temperature). The magnetization states of SrMgiRui-iOa thin films, for x < 0.15, are similar to SrRuOs films. X-ray diffraction results for SrMga-Rui-iOa thin films made in oxygen showed that the films are epitaxial. The thin films could not be well made in Ar atmosphere during laser ablation as there was no clear peak of SrMg^Rui-iOa in x-ray diffraction results. Substrate temperatures had an effect on the resistivity of the films. The residual resistivity ratios were increased by increasing substrate temperature. It was observed that the thickness of thin films are another factor for film quality: Thin films were epitaxial, but thicker films were not epitaxial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterojunction diodes of n-type ZnO/p-type silicon (100) were fabricated by 12 pulsed laser deposition of ZnO films on p-Si substrates in oxygen ambient at 13 different pressures. These heterojunctions were found to be rectifying with a 14 maximum forward-to-reverse current ratio of about 1,000 in the applied 15 voltage range of -5 V to +5 V. The turn-on voltage of the heterojunctions was 16 found to depend on the ambient oxygen pressure during the growth of the ZnO 17 film. The current density–voltage characteristics and the variation of the 18 series resistance of the n-ZnO/p-Si heterojunctions were found to be in line 19 with the Anderson model and Burstein-Moss (BM) shift.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnGa2O4 spinel is a promising new UV transparent electronic conductor. Enhancing the electrical conductivity of this potential oxide phosphor can make it a promising transparent conducting oxide. In this paper, we have investigated the effects of processing and doping on the conductivity of semiconducting ZnGa2O4, particularly thin films. Crystalline zinc gallate thin films have been deposited on fused quartz substrates employing the pulsed laser deposition (PLD) technique at room temperature for an oxygen partial pressure of 0.1 Pa (0.001mbar). The films were found to be UV transparent, the band gap of which shifted to 4.75eV on hydrogen annealing. The band gap of the oxygen stoichiometric bulk powder samples (4.55eV) determined from diffuse reflection spectrum (DRS) shifted to 4.81eV on reduction in a hydrogen atmosphere. The electrical conductivity improved when Sn was incorporated into the ZnGa2O4 spinel. The conductivity of ZnGa2O4:Sn thin films was further improved on reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited on quartz, silicon, and polymer substrates by pulsed laser deposition (PLD) technique at different oxygen partial pressures (0.007 mbar to 0.003 mbar). Polycrystalline ZnO films were obtained at room temperature when the oxygen pressure was between 0.003 mbar and .007 mbar, above and below this pressure the films were amorphous as indicated by the X-ray diffraction (XRD). ZnO films were deposited on Al2O3 (0001) at different substrate temperatures varying from 400oC to 600oC and full width half maximum (FWHM) of XRD peak is observed to decrease as substrate temperature increases. The optical band gaps of these films were nearly 3.3 eV. A cylindrical Langmuir probe is used for the investigation of plasma plume arising from the ZnO target. The spatial and temporal variations in electron density and electron temperature are studied. Optical emission spectroscopy is used to identify the different ionic species in the plume. Strong emission lines of neutral Zn, Zn+ and neutral oxygen are observed. No electronically excited O+ cations are identified, which is in agreement with previous studies of ZnO plasma plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent diode heterojunction on ITO coated glass substrates was fabricated using p-type AgCoO2 and n-type ZnO films by pulsed laser deposition (PLD). The PLD of AgCoO2 thin films was carried out using the pelletized sintered target of AgCoO2 powder, which was synthesized in-house by the hydrothermal process. The band gap of these thin films was found to be ~3.89 eV and they had transmission of~55% in the visible spectral region. Although Hall measurements could only indicate mixed carrier type conduction but thermoelectric power measurements of Seebeck coefficient confirmed the p-type conductivity of the grown AgCoO2 films. The PLD grown ZnO films showed a band gap of ~3.28 eV, an average optical transmission of ~85% and n-type carrier density of~4.6×1019 cm− 3. The junction between p-AgCoO2 and n-ZnO was found to be rectifying. The ratio of forward current to the reverse current was about 7 at 1.5 V. The diode ideality factor was much greater than 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.