189 resultados para Turbinas hidralicas
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
A extração de dentes inclusos pode ser realizada utilizando diferentes técnicas cirúrgicas, senda a odontossecção com o uso de instrumentos rotatórios a mais utilizada nos dias atuais com o uso das turbinas de alta rotação. Recentemente têm sido empregado o aparelho de ultra-som para a realização da odontossecção e da osteotomia nas cirurgias bucais, justificando o seu uso por promoverem uma maior segurança aos tecidos moles adjacentes e promoverem um corte mais preciso. Objetivo: A proposta deste estudo é comparar, in vitro, a eficácia das pontas diamantadas acopladas ao ultrassom quando comparadas às pontas diamantadas acopladas no motor de alta-rotação durante o seccionamento de terceiros molares inferiores e nas técnicas de osteotomias. Metodologia: 45 terceiros molares inferiores humanos hígidos foram incluídos em resina acrílica transparente para padronização da posição desejada durante o corte utilizando a turbina de alta rotação, o aparelho de ultra-som ou a associação de ambos. Os tempos de odontossecção e osteotomia foram calculados a comparados entre os diferentes grupos. Resultados: Durante a odontossecção o grupo ultra-som apresentou tempo médio bem acima dos outros grupos, demonstrando haver diferença estatisticamente significante em relação aos grupos alta-rotação e alta-rotação+ultra-som (p0.05). Quando analisado o tempo gasto para a osteotomia, não foram observadas diferenças estatisticamente significantes entre os 3 grupos (p>0,05). Conclusões: A utilização dos métodos em associação (alta-rotação+ultra-som) apresenta-se como uma opção segura e rápida para os procedimentos de osteotomia e odontossecção, possibilitando uma maior segurança aos tecidos adjacentes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of digesters has become an important alternative for the proper disposal of organic agricultural wastes, serving as a solution to some environmental and health problems. Furthermore, the process of digestion provides commercially valuable by products such as biogas and bio fertilizer. The generation of biogas from agricultural waste, and its use in power generation systems has aroused great interest in rural areas because it enables supply in whole or in large part the energy demand of ownership by reducing production costs. The advent of technology has brought new forms of energy conversion of biogas, as the use of micro turbines specifies to be fuelled with biogas derived from the decomposition of organic matter in digesters, since it has a low level of methane in its composition, and high degree of impurities such as hydrogen sulphide, which are harmful to equipment and reduce the calorific value of biogas. The use of micro turbines behind other advantages like low emissions, great fuel flexibility and low maintenance. This paper presents an analysis of the feasibility of using biogas generated from cattle manure in micro turbines to generate electricity. Behind also an assessment of the energy potential that each animal has on various uses of biogas, and forms of energy recovery from the exhaust gases of the micro turbine. Also conducts an evaluation of the energy savings that the use of biogas aggregates properties.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
El uso de las turbinas de gas en ciclo combinado es una de las alternativas más aceptadas en los últimos tiempos. Existen muchas razones por las que se está investigando sobre la posibilidad de usar otro tipo de combustibles como alternativa al característico, gas natural (metano). Entre otras, se pueden citar: la evolución del precio y la disponibilidad en una zona de algún tipo de gas de síntesis [17] así como estrategias medioambientales y de emisiones [10], [18], [20]. En la bibliografía se encuentran estudios, en los que de forma rigurosa se establece la relación entre la eficiencia de una instalación, usando balances característicos del Segundo Principio de la Termodinámica, y aspectos muy diversos como análisis de los gases de combustión [14], posibilidad de recalentamiento de los gases [19], temperaturas de gasificación [23] y temperatura de llama [18] etc. Estos estudios siempre toman como combustible el metano. En este estudio se presenta un análisis de las emisiones de CO2 (toneladas emitidas) por energía eléctrica producida (MWh) en la instalación de turbina de gas en ciclo combinado usando como combustible los primeros elementos de los hidrocarburos alcanos desde el metano, que se toma como referencia, hasta el heptano. Esto permite la determinación de las emisiones para distintos combustibles con distintas composiciones. Como parámetros relacionados directamente con la eficiencia de la instalación, se han contemplado para cada combustible diferentes temperaturas de entrada a la turbina de gas y distintas relaciones de compresión. Finalmente se obtienen una serie de curvas que relacionan la eficiencia y las emisiones con el número de carbonos presentes en el combustible. El análisis realizado pretende ser un elemento de discusión, basado en aspectos puramente termodinámicos, para la toma de decisiones
Resumo:
El objetivo de este proyecto es estudiar la viabilidad de una central híbrida solar-ciclo combinado (ISCC) en Argelia. La planta consiste en un ciclo combinado basado en dos turbinas de gas de 42 MW cada una y una turbina de vapor de 60 MW de los cuales 20 MW se deben al campo solar, siendo la potencia eléctrica de la planta 144 MW. El campo solar se ha dimensionado para obtener una contribución solar del 5% sobre la producción eléctrica anual de la instalación. La tecnología solar utilizada es la de colectores cilindro parabólicos. La integración del vapor solar en el ciclo combinado se ha considerado como vapor de alta presión ligeramente sobrecalentado. El agua de alimentación al generador de vapor solar es agua precalentada en el ciclo combinado. Para proceder al diseño de la planta se ha utilizado la herramienta GT-PRO. Se ha analizado la alternativa de incluir un sistema de almacenamiento térmico de 7,5 horas con el objetivo de mejorar el aprovechamiento de la energía del campo solar y reducir así el dumping. Finalmente, para ambas alternativas de planta se ha estimado el balance anual de energía a fin de estudiar cuál de ellas conlleva una mayor rentabilidad económica.
Resumo:
Sign.: [calderón-2calderón]8, A-K8, L4
Resumo:
La energía eólica, así como otras energías renovables, ha experimentado en la última década un gran auge que va extendiéndose alrededor de todo el mundo, cada vez más concienciado de la importancia de las energías renovables como una fuente alternativa de energía. Se han sumado al reto todos los países acogidos al Protocolo de Kyoto, que a fin de reducir emisiones están potenciando la energía eólica como la fuente de energía renovable hoy día más viable para la generación eléctrica. Brasil alcanzó en 2011 los 1.509 MW instalados, lo que representa el 50% de Latinoamérica, seguido por México con el 31%. Las características del sector eléctrico así como un marco legal favorable y el alto potencial eólico, hacen que la perspectiva de crecimiento en este tipo de energía sea muy favorable durante los próximos años, con estimaciones de unos 20.000 MW para 2020. El asentamiento del sector en el país de algunos de los fabricantes más importantes y los avances en cuanto a eficiencia de los aerogeneradores, mayor aprovechamiento de la energía de los vientos menos intensos, amplía las posibles ubicaciones de parques eólicos permitiendo una expansión grande del sector. El parque eólico objeto del proyecto está ubicado en el estado de Rio Grande do Sul, al sur del país, y está constituido por 33 aerogeneradores de 2,0 MW de potencia unitaria, lo que supone una potencia total instalada de 66 MW. La energía eléctrica generada en él será de 272,8 GWh/año. Esta energía se venderá mediante un contrato de compraventa de energía (PPA, Power Purchase Agreement) adjudicado por el gobierno Brasileño en sus sistemas de subasta de energía. En el proyecto se aborda primeramente la selección del emplazamiento del parque eólico a partir de datos de viento de la zona. Estos datos son estudiados para evaluar el potencial eólico y así poder optimizar la ubicación de las turbinas eólicas. Posteriormente se evalúan varios tipos de aerogeneradores para su implantación en el emplazamiento. La elección se realiza teniendo en cuenta las características técnicas de las máquinas y mediante un estudio de la productividad del parque con el aerogenerador correspondiente. Finalmente se opta por el aerogenerador G97-2.0 de GAMESA. La ejecución técnica del parque eólico se realiza de forma que se minimicen los impactos ambientales y de acuerdo a lo establecido en el Estudio de Impacto Ambiental realizado. Este proyecto requiere una inversión de 75,4 M€, financiada externamente en un 80 % y el 20 % con recursos propios del promotor. Del estudio económico-financiero se deduce que el proyecto diseñado es rentable económicamente y viable, tanto desde el punto de vista técnico como financiero. Abstract Wind energy, as well as other renewable energies, has experienced over the last decade a boom that is spreading around the world increasingly aware of the importance of renewable energy as an alternative energy source. All countries that ratified the Kyoto Protocol have joined the challenge promoting wind energy in order to reduce emissions as the more feasible renewable energy for power generation. In 2011 Brazil reached 1509 MW installed, 50% of Latin America, followed by Mexico with 31%. Electric sector characteristics as well as a favorable legal framework and the high wind potential, make the perspective of growth in this kind of energy very positive in the coming years, with estimates of about 20,000 MW by 2020. Some leading manufacturers have settled in the country and improvements in wind turbines efficiency with less intense winds, make higher the number of possible locations for wind farms allowing a major expansion of the sector. The planned wind farm is located in the state of Rio Grande do Sul, in the south of the Brazil, and is made up of 33 wind turbines of 2,0 MW each, representing a total capacity of 66 MW. The electricity generated, 272,8 GWh/year will be sold through a power purchase agreement (PPA) awarded by the Brazilian government in its energy auction systems. The project deals with the site selection of the wind farm from wind data in the area. These data are studied to evaluate the wind potential and thus optimize the location of wind turbines. Then several types of turbines are evaluated for implementation at the site. The choice is made taking into account the technical characteristics of the machines and a study of the productivity of the park with the corresponding turbine. Finally selected wind turbine is Gamesa G97-2.0. The technical implementation of the wind farm is done to minimize environmental impacts as established in the Environmental Impact Study. This project requires an investment of 75,4 M€, financed externally by 80% and 20% with equity from the promoter. The economic-financial study shows that the project is economically viable, both technically and financially.
Resumo:
La energía basada en turbinas hidráulicas de reducida potencia es, a menudo, un ejemplo- modelo dentro del campo de las energías renovables desde su aparición a finales del S. XIX, aunque los ingenios precursores surgen mucho antes. Entre los testimonios más antiguos destacan la saqia o rueda persa y la rueda hidráulica romana que había sido previamente implementada en Extremo Oriente, y que después llega a Europa a través de Egipto. Más tarde, durante la Edad Media y el Renacimiento, se generaliza el uso de los molinos hidráulicos, además de los eólicos. Ejemplos de ello son las norias de Alepo (Siria) y de Córdoba (España). Otro caso interesante es el de los molinos de regolfo en la Península Ibérica e Iberoamérica, muy cercanos en su forma y fundamentos a las turbinas hidráulicas. Algunos de estos ingenios siguen activos en los ríos de España. Posteriormente los estudios de Euler, Burdin y Fourneyron prepararon las bases para el definitivo avance de Pelton, Kaplan, Francis, y otros, pero ya como máquinas motrices de los generadores eléctricos. En la actualidad, se admite como límite superior para minihidráulica aquellas centrales con una potencia instalada de 5000 kW, y considerando que cuando las potencias son inferiores a 100 kW se denomina micro hidráulica, aunque en Latinoamérica este límite se fija en 20 kW. El estudio del recurso hídrico, ayudado del geotécnico, constituyen la base sobre la que podremos proyectar el aprovechamiento hidroeléctrico: selección del tipo de central dentro de la tipología disponible, diseño y cálculos de la turbina, obra civil necesaria (azud, presa, canal, tubería forzada, edificio, aspiración, desagüe, etc.) y equipo electromecánico. El proyecto tecnológico se complementa con el estudio de impacto ambiental y de viabilidad económica. Muchos de estos proyectos tratan de reducir la falta de acceso a la energía en poblaciones desfavorecidas, entendida esta carencia como un factor determinante de la pobreza. Así la energía mini y micro-hidráulica adquiere un nuevo valor como tecnología para el desarrollo humano.
Resumo:
El auge que ha surgido en los últimos años por la reparación de edificios y estructuras construidas con hormigón ha llevado al desarrollo de morteros de reparación cada vez más tecnológicos. En el desarrollo de estos morteros por parte de los fabricantes, surge la disyuntiva en el uso de los polímeros en sus formulaciones, por no encontrarse justificado en ocasiones el trinomio prestaciones/precio/aplicación. En esta tesis se ha realizado un estudio exhaustivo para la justificación de la utilización de estos morteros como morteros de reparación estructural como respuesta a la demanda actual disponiéndolo en tres partes: En la primera parte se realizó un estudio del arte de los morteros y sus constituyentes. El uso de los morteros se remonta a la antigüedad, utilizándose como componentes yeso y cal fundamentalmente. Los griegos y romanos desarrollaron el concepto de morteros de cal, introduciendo componentes como las puzolanas, cales hidraúlicas y áridos de polvo de mármol dando origen a morteros muy parecidos a los hormigones actuales. En la edad media y renacimiento se perdió la tecnología desarrollada por los romanos debido al extenso uso de la piedra en las construcciones civiles, defensivas y religiosas. Hubo que esperar hasta el siglo XIX para que J. Aspdin descubriese el actual cemento como el principal compuesto hidraúlico. Por último y ya en el siglo XX con la aparición de moléculas tales como estireno, melanina, cloruro de vinilo y poliésteres se comenzó a desarrollar la industria de los polímeros que se añadieron a los morteros dando lugar a los “composites”. El uso de polímeros en matrices cementantes dotan al mortero de propiedades tales como: adherencia, flexibilidad y trabajabilidad, como ya se tiene constancia desde los años 30 con el uso de caucho naturales. En la actualidad el uso de polímeros de síntesis (polivinialacetato, estireno-butadieno, viniacrílico y resinas epoxi) hacen que principalmente el mortero tenga mayor resistencia al ataque del agua y por lo tanto aumente su durabilidad ya que se minimizan todas las reacciones de deterioro (hielo, humedad, ataque biológico,…). En el presente estudio el polímero que se utilizó fue en estado polvo: polímero redispersable. Estos polímeros están encapsulados y cuando se ponen en contacto con el agua se liberan de la cápsula formando de nuevo el gel. En los morteros de reparación el único compuesto hidraúlico que hay es el cemento y es el principal constituyente hoy en día de los materiales de construcción. El cemento se obtiene por molienda conjunta de Clínker y yeso. El Clínker se obtiene por cocción de una mezcla de arcillas y calizas hasta una temperatura de 1450-1500º C por reacción en estado fundente. Para esta reacción se deben premachacar y homogeneizar las materias primas extraídas de la cantera. Son dosificadas en el horno con unas proporciones tales que cumplan con unas relación de óxidos tales que permitan formar las fases anhidras del Clínker C3S, C2S, C3A y C4AF. De la hidratación de las fases se obtiene el gel CSH que es el que proporciona al cemento de sus propiedades. Existe una norma (UNE-EN 197-1) que establece la composición, especificaciones y tipos de cementos que se fabrican en España. La tendencia actual en la fabricación del cemento pasa por el uso de cementos con mayores contenidos de adiciones (cal, puzolana, cenizas volantes, humo de sílice,…) con el objeto de obtener cementos más sostenibles. Otros componentes que influyen en las características de los morteros son: - Áridos. En el desarrollo de los morteros se suelen usar naturales, bien calizos o silícicos. Hacen la función de relleno y de cohesionantes de la matriz cementante. Deben ser inertes - Aditivos. Son aquellos componentes del mortero que son dosificados en una proporción menor al 5%. Los más usados son los superplastificantes por su acción de reductores de agua que revierte en una mayor durabilidad del mortero. Una vez analizada la composición de los morteros, la mejora tecnológica de los mismos está orientada al aumento de la durabilidad de su vida en obra. La durabilidad se define como la capacidad que éste tiene de resistir a la acción del ambiente, ataques químicos, físicos, biológicos o cualquier proceso que tienda a su destrucción. Estos procesos dependen de factores tales como la porosidad del hormigón y de la exposición al ambiente. En cuanto a la porosidad hay que tener en cuenta la distribución de macroporos, mesoporos y microporos de la estructura del hormigón, ya que no todos son susceptibles de que se produzca el transporte de agentes deteriorantes, provocando tensiones internas en las paredes de los mismos y destruyendo la matriz cementante Por otro lado los procesos de deterioro están relacionados con la acción del agua bien como agente directo o como vehículo de transporte del agente deteriorante. Un ambiente que resulta muy agresivo para los hormigones es el marino. En este caso los procesos de deterioro están relacionados con la presencia de cloruros y de sulfatos tanto en el agua de mar como en la atmosfera que en combinación con el CO2 y O2 forman la sal de Friedel. El deterioro de las estructuras en ambientes marinos se produce por la debilitación de la matriz cementante y posterior corrosión de las armaduras que provocan un aumento de volumen en el interior y rotura de la matriz cementante por tensiones capilares. Otras reacciones que pueden producir estos efectos son árido-álcali y difusión de iones cloruro. La durabilidad de un hormigón también depende del tipo de cemento y su composición química (cementos con altos contenidos de adición son más resistentes), relación agua/cemento y contenido de cemento. La Norma UNE-EN 1504 que consta de 10 partes, define los productos para la protección y reparación de estructuras de hormigón, el control de calidad de los productos, propiedades físico-químicas y durables que deben cumplir. En esta Norma se referencian otras 65 normas que ofrecen los métodos de ensayo para la evaluación de los sistemas de reparación. En la segunda parte de esta Tesis se hizo un diseño de experimentos con diferentes morteros poliméricos (con concentraciones de polímero entre 0 y 25%), tomando como referencia un mortero control sin polímero, y se estudiaron sus propiedades físico-químicas, mecánicas y durables. Para mortero con baja proporción de polímero se recurre a sistemas monocomponentes y para concentraciones altas bicomponentes en la que el polímero está en dispersión acuosa. Las propiedades mecánicas medidas fueron: resistencia a compresión, resistencia a flexión, módulo de elasticidad, adherencia por tracción directa y expansión-retracción, todas ellas bajo normas UNE. Como ensayos de caracterización de la durabilidad: absorción capilar, resistencia a carbonatación y adherencia a tracción después de ciclos hielo-deshielo. El objeto de este estudio es seleccionar el mortero con mejor resultado general para posteriormente hacer una comparativa entre un mortero con polímero (cantidad optimizada) y un mortero sin polímero. Para seleccionar esa cantidad óptima de polímero a usar se han tenido en cuenta los siguientes criterios: el mortero debe tener una clasificación R4 en cuanto a prestaciones mecánicas al igual que para evaluar sus propiedades durables frente a los ciclos realizados, siempre teniendo en cuenta que la adición de polímero no puede ser elevada para hacer el mortero competitivo. De este estudio se obtuvieron las siguientes conclusiones generales: - Un mortero normalizado no cumple con propiedades para ser clasificado como R3 o R4. - Sin necesidad de polímero se puede obtener un mortero que cumpliría con R4 para gran parte de las características medidas - Es necesario usar relaciones a:c< 0.5 para conseguir morteros R4, - La adición de polímero mejora siempre la adherencia, abrasión, absorción capilar y resistencia a carbonatación - Las diferentes proporciones de polímero usadas siempre suponen una mejora tecnológica en propiedades mecánicas y de durabilidad. - El polímero no influye sobre la expansión y retracción del mortero. - La adherencia se mejora notablemente con el uso del polímero. - La presencia de polímero en los morteros mejoran las propiedades relacionadas con la acción del agua, por aumento del poder cementante y por lo tanto de la cohesión. El poder cementante disminuye la porosidad. Como consecuencia final de este estudio se determinó que la cantidad óptima de polímero para la segunda parte del estudio es 2.0-3.5%. La tercera parte consistió en el estudio comparativo de dos morteros: uno sin polímero (mortero A) y otro con la cantidad optimizada de polímero, concluida en la parte anterior (mortero B). Una vez definido el porcentaje de polímeros que mejor se adapta a los resultados, se plantea un nuevo esqueleto granular mejorado, tomando una nueva dosificación de tamaños de áridos, tanto para el mortero de referencia, como para el mortero con polímeros, y se procede a realizar los ensayos para su caracterización física, microestructural y de durabilidad, realizándose, además de los ensayos de la parte 1, mediciones de las propiedades microestructurales que se estudiaron a través de las técnicas de porosimetría de mercurio y microscopia electrónica de barrido (SEM); así como propiedades del mortero en estado fresco (consistencia, contenido de aire ocluido y tiempo final de fraguado). El uso del polímero frente a la no incorporación en la formulación del mortero, proporcionó al mismo de las siguientes ventajas: - Respecto a sus propiedades en estado fresco: El mortero B presentó mayor consistencia y menor cantidad de aire ocluido lo cual hace un mortero más trabajable y más dúctil al igual que más resistente porque al endurecer dejará menos huecos en su estructura interna y aumentará su durabilidad. Al tener también mayor tiempo de fraguado, pero no excesivo permite que la manejabilidad para puesta en obra sea mayor, - Respecto a sus propiedades mecánicas: Destacar la mejora en la adherencia. Es una de las principales propiedades que confiere el polímero a los morteros. Esta mayor adherencia revierte en una mejora de la adherencia al soporte, minimización de las posibles reacciones en la interfase hormigón-mortero y por lo tanto un aumento en la durabilidad de la reparación ejecutada con el mortero y por consecuencia del hormigón. - Respecto a propiedades microestructurales: la porosidad del mortero con polímero es menor y menor tamaño de poro critico susceptible de ser atacado por agentes externos causantes de deterioro. De los datos obtenidos por SEM no se observaron grandes diferencias - En cuanto a abrasión y absorción capilar el mortero B presentó mejor comportamiento como consecuencia de su menor porosidad y su estructura microscópica. - Por último el comportamiento frente al ataque de sulfatos y agua de mar, así como al frente de carbonatación, fue más resistente en el mortero con polímero por su menor permeabilidad y su menor porosidad. Para completar el estudio de esta tesis, y debido a la gran importancia que están tomando en la actualidad factores como la sostenibilidad se ha realizado un análisis de ciclo de vida de los dos morteros objeto de estudio de la segunda parte experimental.In recent years, the extended use of repair materials for buildings and structures made the development of repair mortars more and more technical. In the development of these mortars by producers, the use of polymers in the formulations is a key point, because sometimes this use is not justified when looking to the performance/price/application as a whole. This thesis is an exhaustive study to justify the use of these mortars as a response to the current growing demand for structural repair. The thesis is classified in three parts:The first part is the study of the state of the art of mortars and their constituents.In ancient times, widely used mortars were based on lime and gypsum. The Greeks and Romans developed the concept of lime mortars, introducing components such as pozzolans, hydraulic limes and marble dust as aggregates, giving very similar concrete mortars to the ones used currently. In the middle Age and Renaissance, the technology developed by the Romans was lost, due to the extensive use of stone in the civil, religious and defensive constructions. It was not until the 19th century, when J. Aspdin discovered the current cement as the main hydraulic compound. Finally in the 20th century, with the appearance of molecules such as styrene, melanin, vinyl chloride and polyester, the industry began to develop polymers which were added to the binder to form special "composites".The use of polymers in cementitious matrixes give properties to the mortar such as adhesion, Currently, the result of the polymer synthesis (polivynilacetate, styrene-butadiene, vynilacrylic and epoxy resins) is that mortars have increased resistance to water attack and therefore, they increase their durability since all reactions of deterioration are minimised (ice, humidity, biological attack,...). In the present study the polymer used was redispersible polymer powder. These polymers are encapsulated and when in contact with water, they are released from the capsule forming a gel.In the repair mortars, the only hydraulic compound is the cement and nowadays, this is the main constituent of building materials. The current trend is centered in the use of higher contents of additions (lime, pozzolana, fly ash, silica, silica fume...) in order to obtain more sustainable cements. Once the composition of mortars is analyzed, the technological improvement is centred in increasing the durability of the working life. Durability is defined as the ability to resist the action of the environment, chemical, physical, and biological attacks or any process that tends to its destruction. These processes depend on factors such as the concrete porosity and the environmental exposure. In terms of porosity, it be considered, the distribution of Macropores and mesopores and pores of the concrete structure, since not all of them are capable of causing the transportation of damaging agents, causing internal stresses on the same walls and destroying the cementing matrix.In general, deterioration processes are related to the action of water, either as direct agent or as a transport vehicle. Concrete durability also depends on the type of cement and its chemical composition (cement with high addition amounts are more resistant), water/cement ratio and cement content. The standard UNE-EN 1504 consists of 10 parts and defines the products for the protection and repair of concrete, the quality control of products, physical-chemical properties and durability. Other 65 standards that provide the test methods for the evaluation of repair systems are referenced in this standard. In the second part of this thesis there is a design of experiments with different polymer mortars (with concentrations of polymer between 0 and 25%), taking a control mortar without polymer as a reference and its physico-chemical, mechanical and durable properties were studied. For mortars with low proportion of polymer, 1 component systems are used (powder polymer) and for high polymer concentrations, water dispersion polymers are used. The mechanical properties measured were: compressive strength, flexural strength, modulus of elasticity, adhesion by direct traction and expansion-shrinkage, all of them under standards UNE. As a characterization of the durability, following tests are carried out: capillary absorption, resistance to carbonation and pull out adhesion after freeze-thaw cycles. The target of this study is to select the best mortar to make a comparison between mortars with polymer (optimized amount) and mortars without polymer. To select the optimum amount of polymer the following criteria have been considered: the mortar must have a classification R4 in terms of mechanical performance as well as in durability properties against the performed cycles, always bearing in mind that the addition of polymer cannot be too high to make the mortar competitive in price. The following general conclusions were obtained from this study: - A standard mortar does not fulfill the properties to be classified as R3 or R4 - Without polymer, a mortar may fulfill R4 for most of the measured characteristics. - It is necessary to use relations w/c ratio < 0.5 to get R4 mortars - The addition of polymer always improves adhesion, abrasion, capillary absorption and carbonation resistance - The different proportions of polymer used always improve the mechanical properties and durability. - The polymer has no influence on the expansion and shrinkage of the mortar - Adhesion is improved significantly with the use of polymer. - The presence of polymer in mortars improves the properties related to the action of the water, by the increase of the cement power and therefore the cohesion. The cementitious properties decrease the porosity. As final result of this study, it was determined that the optimum amount of polymer for the second part of the study is 2.0 - 3.5%. The third part is the comparative study between two mortars: one without polymer (A mortar) and another with the optimized amount of polymer, completed in the previous part (mortar B). Once the percentage of polymer is defined, a new granular skeleton is defined, with a new dosing of aggregate sizes, for both the reference mortar, the mortar with polymers, and the tests for physical, microstructural characterization and durability, are performed, as well as trials of part 1, measurements of the microstructural properties that were studied by scanning electron microscopy (SEM) and mercury porosimetry techniques; as well as properties of the mortar in fresh State (consistency, content of entrained air and final setting time). The use of polymer versus non polymer mortar, provided the following advantages: - In fresh state: mortar with polymer presented higher consistency and least amount of entrained air, which makes a mortar more workable and more ductile as well as more resistant because hardening will leave fewer gaps in its internal structure and increase its durability. Also allow it allows a better workability because of the longer (not excessive) setting time. - Regarding the mechanical properties: improvement in adhesion. It is one of the main properties which give the polymer to mortars. This higher adhesion results in an improvement of adhesion to the substrate, minimization of possible reactions at the concrete-mortar interface and therefore an increase in the durability of the repair carried out with mortar and concrete. - Respect to microstructural properties: the porosity of mortar with polymer is less and with smaller pore size, critical to be attacked by external agents causing deterioration. No major differences were observed from the data obtained by SEM - In terms of abrasion and capillary absorption, polymer mortar presented better performance as a result of its lower porosity and its microscopic structure. - Finally behavior against attack by sulfates and seawater, as well as to carbonation, was better in the mortar with polymer because of its lower permeability and its lower porosity. To complete the study, due to the great importance of sustainability for future market facts, the life cycle of the two mortars studied was analysed.