964 resultados para Tumor cell lines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: 5-fluoro-2'-deoxyuridine (FdUrd) depletes the endogenous 5'-deoxythymidine triphosphate (dTTP) pool. We hypothesized whether uptake of exogenous dThd analogues could be favoured through a feedback enhanced salvage pathway and studied the FdUrd effect on cellular uptake of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) and 5-125I-iodo-2'-deoxyuridine (125I-IdUrd) in different cancer cell lines in parallel. Methods: Cell uptake of 18F-FLT and 125I-IdUrd was studied in 2 human breast, 2 colon cancer and 2 glioblastoma lines. Cells were incubated with/without 1 µmol/l FdUrd for 1 h and, after washing, with 1.2 MBq 18F-FLT or 125I-IdUrd for 0.3 to 2 h. Cell bound 18F-FLT and 125I-IdUrd was counted and expressed in % incubated activity (%IA). Kinetics of 18F-FLT cell uptake and release were studied with/without FdUrd modulation. 2'-3H-methyl-fluorothymidine (2'-3H-FLT) uptake with/without FdUrd pretreatment was tested on U87 spheroids and monolayer cells. Results: Basal uptake at 2 h of 18F-FLT and 125I-IdUrd was in the range of 0.8-1.0 and 0.4-0.6 Bq/cell, respectively. FdUrd pretreatment enhanced 18F-FLT and 125I-IdUrd uptake 1.2-2.1 and 1.7-4.4 fold, respectively, while co-incubation with excess thymidine abrogated all 18F-FLT uptake. FdUrd enhanced 18F-FLT cellular inflow in 2 breast cancer lines by factors of 1.8 and 1.6, respectively, while outflow persisted at a slightly lower rate. 2'-3H-FLT basal uptake was very low while uptake increase after FdUrd was similar in U87 monolayer cells and spheroids. Conclusions: Basal uptake of 18F-FLT was frequently higher than that of 125I-IdUrd but FdUrd induced uptake enhancement was stronger for 125I-IdUrd in five of six cell lines. 18F-FLT outflow from cells might be an explanation for the observed difference with 125I-IdUrd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifteen human melanoma cells lines were tested by an antibody-binding radioimmunoassay using a monoclonal antibody (A12) directed against the common acute lymphoblastic leukemia antigen (CALLA). Cells from six melanoma lines were found to react with this antibody. The level of antigen and the percentage of positive cells in these six melanoma lines showed wide variation, as demonstrated by analysis in the fluorescence-activated cell sorter (FACS). Immunoprecipitation of solubilized 125I-labeled membrane proteins from CALLA positive melanoma cells with A12 monoclonal antibody revealed a major polypeptide chain with an apparent m.w. of 100,000 daltons, characteristic for CALLA as determined on SDS-polyacrylamide gel electrophoresis. The expression of CALLA on MP-6 melanoma cells was modulated when the cells were cultured in the presence of A12 antibody. Reexpression of CALLA on these cells occurred within 5 days after transfer of the modulated cells into medium devoid of monoclonal antibody.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent infection induces an adaptive immune response that is mediated by T and B lymphocytes. Upon triggering with an antigen, these cells become activated and turn into fast expanding cells able to efficiently defend the host. Lymphocyte activation is controlled by a complex composed of CARMA1, BCL10 and MALT1 which regulates the NF-KB signaling pathway upon antigen triggering. Abnormally high expression or activity of either one of these three proteins can favor the development of lymphomas, while genetic defects in the pathway are associated with immunodeficiency. MALT1 was identified as a paracaspase sharing homology with other cysteine proteases, namely caspases and metacaspases. In order to be active, caspases need to dimerize. Based on their sequence similarity with MALT1, we hypothesized that dimerization might also be a mechanism of activation employed by MALT1. To address this assumption, we performed a bioinformatics modelling based on the crystal structures of several caspases. Our model suggested that the MALT1 caspase-like domain can indeed form dimers. This finding was later confirmed by several published crystal structures of MALT1. In the dimer interface of our model, we noticed the presence of charged amino acids that could potentially form salt bridges and thereby hold both monomers together. Mutation of one of these residues, E549, into alanine completely blocked the catalytic activity of MALT1. Additionally, we provided evidence for a role of E549 in promoting the MALTl-dependent growth of cells derived from diffuse large B cell lymphoma (DLBCL) of the aggressive B cell-like type (ABC). To our initial surprise, the E549A mutation showed only a partial defect in dimerization, indicating that additional residues are essential to form a stable dimer. The MALT1 crystal structures revealed a key function for E549 in stabilizing the catalytic site of the protease via its interaction with an arginine which is located next to the catalytic active cysteine. In an additional study, we discovered that MALT1 monoubiquitination is required for the catalytic activity of the protease. Interestingly, we found that the MALT1 dimer interface mutant E549A could not be monoubiquitinated. Based on these findings, we suggest that correct formation of the dimer interface is a prerequisite for monoubiquitination. In a second project, we discovered a novel target of the protease MALT1, the ribonuclease Regnase¬la It was described that the RNase activity of Regnase-1 negatively regulates immune responses. We could show that in ABC DLBCL cell lines, Regnase-1 is not only cleaved by MALT1 but also phosphorylated, at least in part, by the inhibitor of KB kinase (IKK). Both regulations appear to restrain the RNase function of Regnase-1 and thereby allow the production of pro-survival proteins. In conclusion, our studies further highlight and explain the importance of the catalytic activity of MALT1 for the activation of lymphocytes and provide additional knowledge for the development of specific drugs targeting the catalytic activity of MALT1 for immunomodulation and treatment of lymphomas.  SUMMARY IN FRENCH PhD Thesis Katrin Cabalzar 2 SUMMARY IN FRENCH Une infection persistante induit une réponse immunitaire adaptative par l'intermédiaire des lymphocytes T et B. Quand elles reconnaissent l'antigène, ces cellules sont activées et se multiplient très rapidement pour défendre efficacement l'hôte. L'activation des lymphocytes est transmise par un complexe composé de trois protéines, CARMA1, BCL10 et MALT1, qui régule la voie de signalisation NF-KB lorsque l'antigène est reconnu. L'expression ou l'activité anormalement élevée de l'une de ces trois protéines peut favoriser le développement de lymphomes, tandis que des défauts génétiques de cette voie de signalisation sont associés à l'immunodéficience. MALT1 a été identifiée comme étant une paracaspase qui partage des séquences homologues avec d'autres protéases à cystéine, comme les caspases et les métacaspases. Pour être actives, les caspases ont besoin de dimériser. Etant donné leur similarité de séquence avec MALT1, nous avons supposé que la dimérisation pouvait aussi être un mécanisme d'activation utilisé par MALT1. Pour vérifier cette hypothèse, nous avons conçu un modèle bioinformatique à partir des structures cristallographiques de plusieurs caspases. Et notre modèle a suggéré que le domaine catalytique de MALT1 était effectivement capable de former des dimères. Cette découverte a été confirmée plus tard par des publications qui montrent des structures cristallographiques dimériques de MALT1. Dans l'interface du dimère de notre modèle, nous avons remarqué la présence d'acides aminés chargés qui pouvaient former des liaisons ioniques et ainsi réunir les deux monomères. La mutation de l'un de ces résidus, E549, pour une alanine, a complètement inhibé l'activité catalytique de MALT1. De plus, nous avons mis en évidence un rôle d'E549 dans la croissance dépendante de MALT1, des cellules dérivées de lymphomes B diffus à grandes cellules (DLBCL) de sous-type cellules B actives (ABC). Dans un premier temps nous avons été surpris de constater que cette mutation révélait seulement un défaut partiel de dimérisation, ce qui indique que des acides aminés supplémentaires sont indispensables pour former un dimère stable. Les structures cristallographiques de MALT1 ont révélé un rôle primordial d'E549 dans la stabilisation du site catalytique de la protéase via son interaction avec une arginine qui se trouve à côté de la cystéine du site actif. Dans une autre étude, nous avons découvert que la monoubiquitination de MALT1 est requise pour l'activité catalytique de la protéase. A remarquer que nous avons trouvé que le mutant E549A de l'interface dimère de MALT1 n'a pas pu être monoubiquitiné. Sur la base de ces résultats, nous suggérons que la formation correcte de l'interface du dimère est une condition préalable pour la monoubiquitination. Dans un second projet, nous avons découvert une nouvelle cible de la protéase MALT1, la ribonucléase Regnase-1. Il a été décrit que l'activité RNase de Regnase-1 régulait négativement les réponses immunitaires. Nous avons pu montrer que dans les lignées cellulaires ABC DLBCL, la Regnase-1 n'était pas seulement clivée par MALT1 mais également phosphorylée, au moins en partie, par la kinase de l'inhibiteur de KB (IKK). Les deux régulations semblent supprimer la fonction RNase de Regnase-1 et permettre ainsi la stabilisation de certains ARN messagers et la production de protéines favorisant la survie. En conclusion, nos études mettent en évidence le rôle-clé de la dimérisation de MALT1 et expliquent l'importance de l'activité catalytique de MALT1 pour l'activation des lymphocytes. Ainsi, nos résultats apportent des connaissances supplémentaires pour le développement de médicaments spécifiques ciblant l'activité catalytique de MALT1, qui pourraient être utiles pour modifier les réponses immunitaires et traiter des lymphomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine cytolytic T cell lines have been analyzed for the expression of two surface glycoproteins called T145 and T130. T145, known to be expressed by activated cytolytic T cells, is also expressed by such lines, but T130, which has been described by a universal T cell marker, is not. Our results suggest a structural relationship between T145 and T130. Vicia villosa lectin, which binds selectively to T145 of activated T cells and which is cytotoxic for cytolytic T cell lines, has been used to select lectin-resistant mutants from these lines. Five independent lectin-resistant mutants have been obtained. All of them are cytolytically active, bind up to 100-fold less lectin than the parental lines, but still express T145 or a closely related glycoprotein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shedding of intercellular adhesion molecule 1 (ICAM-1) is believed to play a role in tumor cell resistance to cell-mediated cytotoxicity. However, the mechanism whereby ICAM-1 is shed from the surface of tumor cells remains unclear. In this study, we have addressed the possibility that matrix metalloproteinases are implicated in ICAM-1 shedding. Our observations suggest a functional relationship between ICAM-1 and matrix metalloproteinase 9 (MMP-9) whereby ICAM-1 provides a cell surface docking mechanism for proMMP-9, which, upon activation, proteolytically cleaves the extracellular domain of ICAM-1 leading to its release from the cell surface. MMP-9-dependent shedding of ICAM-1 is found to augment tumor cell resistance to natural killer (NK) cell-mediated cytotoxicity. Taken together, our observations propose a mechanism for ICAM-1 shedding from the cell surface and provide support for MMP involvement in tumor cell evasion of immune surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-dependent lymphocyte cytotoxicity against human colon carcinoma cells grown in vitro was demonstrated with rabbit anti-carcinoembryonic antigen (CEA) antisera and normal human lymphocytes. The same antisera produced no tumor cell lysis in a complement-dependent cytotoxicity test. The specificity of the reaction was demonstrated by the inhibition of antibody-dependent lymphocyte cytotoxicity after the addition of increasing amounts of purified CEA to the antiserum and by the fact that only tumor cell lines expressing CEA on their surface were lysed. Antibody-dependent lymphocyte cytotoxicity was also observed against two colon carcinoma cell lines that expressed Blood Group A antigen, using a human serum containing anti-Blood Group A antibodies of the immunoglobulin G class. This reaction was specifically inhibited by absorption with Blood Group A red cells, whereas the anti-CEA-dependent cytotoxicity was not inhibited by absorption with red cells of different blood groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose/Objective(s): Radiotherapy is an effective treatment modality against cancer. Despite recent technical progresses in radiation delivery precision, toxicity to healthy tissues remains the main limiting factor. RasGAP is a regulator of the Ras and Rho pathway; it has either a pro- or anti-apoptotic activity depending on the level of caspase expressed in the cell. The RasGAP derived peptide: TAT-RasGAP317 - 326 is the minimal sequence known to sensitize cancer cells, but not healthy cells, to genotoxin-induced apoptosis. In this study the TAT-RasGAP317 - 326 radio-sensitizing effect was tested in vitro and in vivo.Materials/Methods: Two weeks clonogenic forming assays with 5 human cancer cells (PANC-1, HCT116, U87, U251 and HeLa) and a non tumorigenic cell line (HaCaT) were performed. Cells were exposed to 0, 1, 2 and 4 Gy with or without 20 mMTAT-RasGAP317 - 326. Twenty mMTAT peptide was also used as control. TAT-RasGAP317 - 326 effect was also tested in tumor xenograft mouse models. Mice bearing HCT116 tumors (WT or p53 mutant) received 1.65 mg/kg TAT-RasGAP317 - 326 i.p. injected and were locally irradiated for 10 days with 3 Gy. Tumor volume was then followed during a minimum of 20 days. Control mice were treated with a single modality, either with TAT-RasGAP317 - 326 or with radiotherapy.Results: At all the tested radiation doses TAT-RasGAP317 - 326 showed a significant supra additive radio-sensitizing effect on all the tested tumor cell lines. Furthermore, it showed no sensitizing effect on the non tumorigenic cell line. In vivo, TAT-RasGAP317 - 326 also showed a significantly radio-sensitizing effect as shown by a significant higher reduction in tumor volume as much as by a significant tumor growth delay.Conclusions: Taken together our data suggest that TAT-RasGAP317 - 326 has a radio-sensitizing effect on in vivo and in vitro tumors without any effect on healthy tissues. Therefore TAT-RasGAP317 - 326 should be considered as a novel and attractive sensitizer compound allowing an improvement of the therapeutic interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisera highly specific for carcinoembryonic antigen (CEA) from New Zealand White rabbits and a goat reacted strongly in antibody binding tests with cultured tumor cell lines, irrespective of the ability of the cell lines to produce CEA. The most reactive were colon carcinoma and melanoma cell lines, the former known to produce CEA and the latter not associated with CEA production. The reactivity was not diminished by absorption with perchloric acid extracts of normal lung or spleen, whereas absoprtion with purified CEA preparations abolished the reactivity. Quantitative absorption studies indicated that reactivity against CEA-producing cell lines could be totally removed by absorption with other CEA-producing lines but not with melanoma cell lines. Reactivity against melanoma cell lines could be completely removed by colon carcinoma cells as well as by melanoma cells. Antisera raised against purified CEA, after absorption with extracts of normal lung, still contained two populations of antibodies, one that binds a newly described antigen cross-reacting with CEA which is present on melanoma cells.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioassays with bioreporter bacteria are usually calibrated with analyte solutions of known concentrations that are analysed along with the samples of interest. This is done as bioreporter output (the intensity of light, fluorescence or colour) does not only depend on the target concentration, but also on the incubation time and physiological activity of the cells in the assay. Comparing the bioreporter output with standardized colour tables in the field seems rather difficult and error-prone. A new approach to control assay variations and improve application ease could be an internal calibration based on the use of multiple bioreporter cell lines with drastically different reporter protein outputs at a given analyte concentration. To test this concept, different Escherichia coli-based bioreporter strains expressing either cytochrome c peroxidase (CCP, or CCP mutants) or β-galactosidase upon induction with arsenite were constructed. The reporter strains differed either in the catalytic activity of the reporter protein (for CCP) or in the rates of reporter protein synthesis (for β-galactosidase), which, indeed, resulted in output signals with different intensities at the same arsenite concentration. Hence, it was possible to use combinations of these cell lines to define arsenite concentration ranges at which none, one or more cell lines gave qualitative (yes/no) visible signals that were relatively independent of incubation time or bioreporter activity. The discriminated concentration ranges would fit very well with the current permissive (e.g. World Health Organization) levels of arsenite in drinking water (10 µg l−1).