557 resultados para Tromp, Maarten Harpertsz.Tromp, Maarten Harpertsz.Maarten Harpertsz.Tromp
Resumo:
In this paper, a method for modeling diffusive boundaries in finite difference time domain (FDTD) room acoustics simulations with the use of impedance filters is presented. The proposed technique is based on the concept of phase grating diffusers, and realized by designing boundary impedance filters from normal-incidence reflection filters with added delay. These added delays, that correspond to the diffuser well depths, are varied across the boundary surface, and implemented using Thiran allpass filters. The proposed method for simulating sound scattering is suitable for modeling high frequency diffusion caused by small variations in surface roughness and, more generally, diffusers characterized by narrow wells with infinitely thin separators. This concept is also applicable to other wave-based modeling techniques. The approach is validated by comparing numerical results for Schroeder diffusers to measured data. In addition, it is proposed that irregular surfaces are modeled by shaping them with Brownian noise, giving good control over the sound scattering properties of the simulated boundary through two parameters, namely the spectral density exponent and the maximum well depth.
Resumo:
One of the attractive features of sound synthesis by physical modeling is the potential to build acoustic-sounding digital instruments that offer more flexibility and different options in its design and control than their real-life counterparts. In order to develop such virtual-acoustic instruments, the models they are based on need to be fully parametric, i.e., all coefficients employed in the model are functions of physical parameters that are controlled either online or at the (offline) design stage. In this letter we show how propagation losses can be parametrically incorporated in digital waveguide string models with the use of zero-phase FIR filters. Starting from the simplest possible design in the form of a three-tap FIR filter, a higher-order FIR strategy is presented and discussed within the perspective of string sound synthesis with digital waveguide models.
Resumo:
Tuning is a widespread technique to combine, date and interpret multiple fossil proxy archives through aligning supposedly synchronous events between the archives. The approach will be reviewed by discussing a number of literature examples, ranging from peat and tephra layers to orbital tuning and d18O series from marine and ice deposits. Potential problems will be highlighted such as the dangers of circular reasoning and unrecognised chronological uncertainties, and some solutions suggested. Fossil proxy research could become enhanced if tuning were approached in a more quantitative, reliable and objective way, and especially if individual proxy archives were non-tuned and kept on independent time-scales.
Resumo:
Stable isotopes (delta O-18 and delta C-13) of lacustrine carbonates (Chara spp. algae and Pisidium spp. molluscs) from a lake sedimentary sequence in central Sweden were analysed to infer changes in lake hydrology and climate during the late Holocene. Results from analysis of lake water isotopes (delta O-18 and delta H-2) show that Lake Blektjarnen water isotope composition is responsive to the balance between evaporation and input water (E/l ratio). A high E/l ratio results from a dry and probably warmer climate, decreasing the relative importance of precipitation input. Under such conditions evaporation and atmospheric equilibration probably enrich lake water in O-18 and C-13, respectively, which is reflected in the isotopic composition of the carbonates in the lake. From the relatively positive Chara delta O-18 values we infer that conditions were dry and warm between 4400 and 4000 cal. a BP, whereas more negative values indicate that conditions were wetter and probably cooler between 4000 and 3000 cal. a BP. A drier climate is inferred from more positive values between 2500 and 1000 cal. a BP. However, a successive depletion after ca. 1750 cal. a BP, also detected in several other delta O-18 records (carbonate and diatom), suggest increasingly wetter conditions in Scandinavia after that time, which is probably related to increased strength of the zonal flow.
Resumo:
This paper aims at providing a better insight into the 3D approximations of the wave equation using compact finite-difference time-domain (FDTD) schemes in the context of room acoustic simulations. A general family of 3D compact explicit and implicit schemes based on a nonstaggered rectilinear grid is analyzed in terms of stability, numerical error, and accuracy. Various special cases are compared and the most accurate explicit and implicit schemes are identified. Further considerations presented in the paper include the direct relationship with other numerical approaches found in the literature on room acoustic modeling such as the 3D digital waveguide mesh and Yee's staggered grid technique.
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.
Resumo:
We propose a frequency domain adaptive algorithm for
wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the
separation ?lter is adapted from the information given by a
third microphone. Working in the frequency domain has a
series of advantages, among which are the ease of design of
the propagation ?lter and its differentiation with respect to
its parameters.
Although the adaptive algorithm was developed as a ?rst
step for the estimation of playing parameters in wind instruments it can also be used, without any modi?cations, for
other applications such as in-air direction of arrival (DOA)
estimation. Preliminary results on these applications will
also be presented.
Resumo:
This paper investigates numerical simulation of a string coupled
transversely to a resonant body. Starting from a complete nite
difference formulation, a second model is derived in which the
body is represented in modal form. The main advantage of this hybrid form is that the body model is scalable, i.e. the computational
complexity can be adjusted to the available processing power. Numerical results are calculated and discussed for simplied models
in the form of string-string coupling and string-plate coupling.
Resumo:
We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.