798 resultados para Tripartite entanglement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entanglement spectrum describing quantum correlations in many-body systems has been recently recognized as a key tool to characterize different quantum phases, including topological ones. Here we derive its analytically scaling properties in the vicinity of some integrable quantum phase transitions and extend our studies also to nonintegrable quantum phase transitions in one-dimensional spin models numerically. Our analysis shows that, in all studied cases, the scaling of the difference between the two largest nondegenerate Schmidt eigenvalues yields with good accuracy critical points and mass scaling exponents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate genuine three-mode nonlocality based on phase-space formalism. A Svetlichny-type Bell inequality is formulated in terms of the s-parametrized quasiprobability function. We test such a tool using exemplary forms of three-mode entangled states, identifying the ideal measurement settings required for each state. We thus verify the presence of genuine three-mode nonlocality that cannot be reproduced by local or nonlocal hidden variable models between any two out of three modes. In our results, GHZ- and W-type nonlocality can be fully discriminated. We also study the behavior of genuine tripartite nonlocality under the effects of detection inefficiency and dissipation induced by local thermal environments. Our formalism can be useful to test the sharing of genuine multipartite quantum correlations among the elements of some interesting physical settings, including arrays of trapped ions and intracavity ultracold atoms. DOI: 10.1103/PhysRevA.87.022123

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We showthat in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a Bell-like inequality performed using various instances of multiphoton entangled states to demonstrate that losses occurring after the unitary transformations used in the nonlocality test can be counteracted by enhancing the size of such entangled states. In turn, this feature can be used to overcome detection inefficiencies affecting the test itself: a slight increase in the size of such states, pushing them towards a more macroscopic form of entanglement, significantly improves the state robustness against detection inefficiency, thus easing the closing of the detection loophole. Differently, losses before the unitary transformations cause decoherence effects that cannot be compensated using macroscopic entanglement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer - or communication - of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydro-entanglement is a versatile process for bonding non-woven fabrics by the use of fine, closely-spaced, high-velocity jets of water to rearrange and entangle arrays of fibres. The cost of the process mainly depends on the amount of energy consumed. Therefore, the economy of the process is highly affected by optimisation of the energy required. In this paper a parameter called critical pressure is introduced which is indicative of the energy level requirement. The results of extensive experimental work are reported and analysed to give a clear understanding of the effect of the web and fibre properties on the critical pressure in the hydro-entanglement process. Furthermore, different energy-transfer distribution schemes are tested on various fabrics. The optimum scheme which involves the lowest energy consumption and the best fabric properties is identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the generation of fully inseparable three-mode entangled states of radiation by interlinked nonlinear interactions in chi((2)) media. We show how three-mode entanglement can be used to realize symmetric and asymmetric telecloning machines, which achieve optimal fidelity for coherent states. An experimental implementation involving a single nonlinear crystal in which the two interactions take place simultaneously is suggested. Preliminary experimental results showing the feasibility and the effectiveness of the interaction scheme with a seeded crystal are also presented. (C) 2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does bound entanglement naturally appear in quantum many-body systems? We address this question by showing the existence of bound-entangled thermal states for harmonic oscillator systems consisting of an arbitrary number of particles. By explicit calculations of the negativity for different partitions, we find a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We offer an interpretation of this result in terms of entanglement-area laws, typical of these systems. Finally, we discuss generalizations of this result to other systems, including spin chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the ground-state entanglement in highly connected many-body systems consisting of harmonic oscillators and spin-1/2 systems. Varying their degree of connectivity, we investigate the interplay between the enhancement of entanglement, due to connections, and its frustration, due to monogamy constraints. Remarkably, we see that in many situations the degree of entanglement in a highly connected system is essentially of the same order as in a low connected one. We also identify instances in which the entanglement decreases as the degree of connectivity increases.