965 resultados para Transverse Vibration of Beams
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
The capacity of beams is a very important factor in the study of durability of structures and structural members. The capacity of a high-strength steel I-beam made of S960 QC was investigated in this study. The investigation included assessment of the service limits and ultimate limits of the steel beam. The thesis was done according to European standards for steel structures, Eurocode 3. An analytical method was used to determine the throat thickness, deformation, elastic and plastic moment capacities as well as the fatigue life of the beam. The results of the analytical method were compared with those obtained by Finite Element Analysis (FEA). Elastic moment capacity obtained by the analytical method was 172 kNm. FEA and the analytical method predicted the maximum lateral-torsional buckling (LTB) capacity in the range of 90-93 kNm and the probability of failure as a result of LTB is estimated to be 50%. The lateral buckling capacity meant that the I-beam can carry a safe load of 300 kN instead of the initial load of 600 kN. The beam is liable to fail shortly after exceeding the elastic moment capacity. Based on results in of the different approaches, it was noted that FEA predicted higher deformation values on the load-deformation curve than the analytical results. However, both FEA and the analytical methods predicted identical results for nominal stress range and moment capacities. Fatigue life was estimated to be in the range of 53000-64000 cycles for bending stress range using crack propagation equation and strength-life approach. As Eurocode 3 is limited to steel grades up to S690, results for S960 must be verified with experimental data and appropriate design rules.
Resumo:
The objective of this study was to make a quantitative assess of the anatomic characteristics of leaf blade of the sugarcane cultivars RB855113, SP80-1842, SP80-1816, RB867515 and clone RB957689 presenting different sensitivity to the mixture of sodium trifloxysulfuron + ametryn herbicides. Compared to the other cultivars assessed, RB855113 cultivar, considered more sensitive to the herbicide mixture, presented relevant differences such as greater proportion of bulliform cells, greater tissue proportion in the transverse section of the leaf blade, greater stomata and trichome density on both surfaces, thinner epidermis on the adaxial surface and length of stomata on both surfaces. The external paraclinal wall of the bulliform cells was thinner than in the common epidermis cells in all the genotypes on the adaxial and abaxial surfaces. Multivariate analysis of the data on the variables considered most relevant to explain the herbicide penetration singled out the sensitive RB855113 from the other materials. Such characteristics can explain the greater penetration, and consequently, greater sensitivity of this cultivar to the sodium trifloxysulfuron + ametryn mixture.
Resumo:
The objectives of this study was the physical, chemical, and physiological characterization of marolo (Annona crassiflora, Mart.) during its development. The fruits were harvested 12 Km off Itumirim, Southern Minas Gerais, Brazil, at 20-d intervals from anthesis to fruit maturity. The first fruits were harvested within 60 days. The total development of the fruit took 140 days starting from anthesis. At 140 days after anthesis, the fruit reached its maximum size, with mass of 1.380g, transverse diameter of 13.0 cm, and longitudinal diameter of 11.5 cm. During its development, the fruit showed increase in mass and in traverse and longitudinal diameters. The changes during maturation and ripening, such as: pH reduction and starch degradation, pectic solubilization, and increase in total sugars, soluble solids (ºB), respiratory rate (CO2), titratable acidity, vitamin C, and β-caroteno were observed from the 120th day of marolo development. A decrease in ability to sequester free radicals was observed up the 120th day, followed by an increase. The volatile compounds identified at the end of the development included the esters group only.
Resumo:
Cette thèse vise à répondre à trois questions fondamentales: 1) La diminution de l’excitabilité corticospinale et le manque d’inhibition intracorticale observés suite à la stimulation magnétique transcrânienne (SMT) du cortex moteur de la main atteinte de sujets hémiparétiques sont-ils aussi présents suite à la SMT du cortex moteur de la jambe atteinte? 2) Est-ce que les altérations dans l’excitabilité corticomotrice sont corrélées aux déficits et incapacités motrices des personnes ayant subi un accident vasculaire cérébral depuis plus de 6 mois? 3) La vibration musculaire, étant la source d’une forte afférence sensorielle, peut-elle moduler l’excitabilité corticomotrice et améliorer la performance motrice de ces personnes? Premièrement, afin d’appuyer notre choix d’intervention et d’évaluer le potentiel de la vibration mécanique locale pour favoriser la réadaptation des personnes ayant une atteinte neurologique, nous avons réalisé une révision en profondeur de ses applications et intérêts cliniques à partir d’informations trouvées dans la littérature scientifique (article 1). La quantité importante d’information sur les effets physiologiques de la vibration contraste avec la pauvreté des études qui ont évalué son effet thérapeutique. Nous avons trouvé que, malgré le manque d’études, les résultats sur son utilisation sont encourageants et positifs et aucun effet adverse n’a été rapporté. Dans les trois autres articles qui composent cette thèse, l’excitabilité des circuits corticospinaux et intracorticaux a été étudiée chez 27 sujets hémiparétiques et 20 sujets sains sans atteintes neurologiques. Les fonctions sensorimotrices ont aussi été évaluées par des tests cliniques valides et fidèles. Tel qu’observé à la main chez les sujets hémiparétiques, nous avons trouvé, par rapport aux sujets sains, une diminution de l’excitabilité corticospinale ainsi qu’un manque d’inhibition intracorticale suite à la SMT du cortex moteur de la jambe atteinte (article 2). Les sujets hémiparétiques ont également montré un manque de focus de la commande motrice lors de l’activation volontaire des fléchisseurs plantaires. Ceci était caractérisé par une augmentation de l’excitabilité nerveuse des muscles agonistes, mais aussi généralisée aux synergistes et même aux antagonistes. De plus, ces altérations ont été corrélées aux déficits moteurs au membre parétique. Le but principal de cette thèse était de tester les effets potentiels de la vibration des muscles de la main (article 3) et de la cuisse (article 4) sur les mécanismes neuronaux qui contrôlent ces muscles. Nous avons trouvé que la vibration augmente l’amplitude de la réponse motrice des muscles vibrés, même chez des personnes n’ayant pas de réponse motrice au repos ou lors d’une contraction volontaire. La vibration a également diminué l’inhibition intracorticale enregistrée au quadriceps parétique (muscle vibré). La diminution n’a cependant pas été significative au niveau de la main. Finalement, lors d’un devis d’investigation croisé, la vibration de la main ou de la jambe parétique a résulté en une amélioration spécifique de la dextérité manuelle ou de la coordination de la jambe, respectivement. Au membre inférieur, la vibration du quadriceps a également diminuée la spasticité des patients. Les résultats obtenus dans cette thèse sont très prometteurs pour la rééducation de la personne hémiparétique car avec une seule séance de vibration, nous avons obtenu des améliorations neurophysiologiques et cliniques.
Resumo:
Tear and wear properties of short kevlar fiber, thermoplastic polcurethane (TPU) composite with respect to fiber loading-and fiber onentation has been studied and the fracture surfaces were examined under scanning electron microscope (SEM). Tear strength first decreased up to 20 phr fiber loading and then gradually increased with increasing fiber loading. Anisotropy in tear strength was evident beyond a fiber loading of 20 phr. Tear fracture surface of unfilled TPU showed sinusoidal folding characteristics of high strength matrix. At low fiber loading the tear failure was mainly due to fibermatrix failure whereas at higher fiber loading the failure occurred by fiber breakage. Abrasion loss shows a continuous rise with increasing fiber loading, the loss in the transverse orientation of fibers being higher than that in the longitudinal orientation. The abraded surface showed lone cracks and ridges parallel to the direction of abrasion indicating an abrasive wear mechanism. In the presence of fber the abrasion loss was mainly due to fiber low.
Resumo:
The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.
Resumo:
A/though steel is most commonly used as a reinforcing material in concrete due to its competitive cost and favorable mechanical properties, the problem of corrosion of steel rebars leads to a reduction in life span of the structure and adds to maintenance costs. Many techniques have been developed in recent past to reduce corrosion (galvanizing, epoxy coating, etc.) but none of the solutions seem to be viable as an adequate solution to the corrosion problem. Apart from the use of fiber reinforced polymer (FRP) rebars, hybrid rebars consisting of both FRP and steel are also being tried to overcome the problem of steel corrosion. This paper evaluates the performance of hybrid rebars as longitudinal reinforcement in normal strength concrete beams. Hybrid rebars used in this study essentially consist of glass fiber reinforced polymer (GFRP) strands of 2 mm diameter wound helically on a mild steel core of 6 mm diameter. GFRP stirrups have been used as shear reinforcement. An attempt has been made to evaluate the flexural and shear performance of beams having hybrid rebars in normal strength concrete with and without polypropylene fibers added to the concrete matrix
Resumo:
Many ultrafast structural phenomena in solids at high fluences are related to the hardening or softening of particular lattice vibrations at lower fluences. In this paper we relate femtosecond-laser-induced phonon frequency changes to changes in the electronic density of states, which need to be evaluated only in the electronic ground state, following phonon displacement patterns. We illustrate this relationship for a particular lattice vibration of magnesium, for which we—surprisingly—find that there is both softening and hardening as a function of the femtosecond-laser fluence. Using our theory, we explain these behaviours as arising from Van Hove singularities: We show that at low excitation densities Van Hove singularities near the Fermi level dominate the change of the phonon frequency while at higher excitations Van Hove singularities that are further away in energy also become important. We expect that our theory can as well shed light on the effects of laser excitation of other materials.
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
A new system for the generation of hydrodynamic modulated voltammetry (HMV) is presented. This system consists of an oscillating jet produced through the mechanical vibration of a large diaphragm. The structure of the cell is such that a relatively small vibration is transferred to a large fluid flow at the jet outlet. Positioning of an electrode (Pt, 0.5 mm or 25 mu m diameter) over the exit of this jet enables the detection of the modulated flow of liquid. While this flow creates modest mass transfer rates (time averaged similar to 0.015 cm s(-1)) it can also be used to create a HMV system where a 'lock-in' approach is adopted to investigate the redox chemistry in question. This is demonstrated for the Fe(CN)(6)(3-/4-) redox system. Here 'lock-in' to the modulated hydrodynamic signal is achieved through the deployment of bespoke software. The apparatus and procedure is shown to produce a simple and efficient way to obtain the desired signal. In addition the spatial variation of the HMV signal, phase correction and time averaged current with respect to the jet orifice is presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper shows the process of the virtual production development of the mechanical connection between the top leaf of a dual composite leaf spring system to a shackle using finite element methods. The commercial FEA package MSC/MARC has been used for the analysis. In the original design the joint was based on a closed eye-end. Full scale testing results showed that this configuration achieved the vertical proof load of 150 kN and 1 million cycles of fatigue load. However, a problem with delamination occurred at the interface between the fibres going around the eye and the main leaf body. To overcome this problem, a second design was tried using transverse bandages of woven glass fibre reinforced tape to wrap the section that is prone to delaminate. In this case, the maximum interlaminar shear stress was reduced by a certain amount but it was still higher than the material’s shear strength. Based on the fact that, even with delamination, the top leaf spring still sustained the maximum static and fatigue loads required, the third design was proposed with an open eye-end, eliminating altogether the interface where the maximum shear stress occurs. The maximum shear stress predicted by FEA is reduced significantly and a safety factor of around 2 has been obtained. Thus, a successful and safe design has been achieved.
Resumo:
Delayed ettringite formation (DEF) is a chemical reaction with proven damaging effects on hydrated concrete. Ettringite crystals can cause cracks and their widening due to pressure on cracked walls caused by the positive volume difference in the reaction. Concrete may show improvements in strength at early ages but further growth of cracks causes widening and spreading through the concrete structure. In this study, finely dispersed crystallization nuclei achieved by adding air-entraining agent (AEA) and short vibration of specimens is presented as the main prerequisite for reducing DEF-induced deterioration of hydrated concrete. The study presents the method and mechanism for obtaining the required nucleation. Controlling long-term DEF by providing AEA-induced crystallisation nuclei, prevented excessive and rapid initial strength improvements, and resulted in a slight increase of compressive strength of fine grained concrete with only marginally lower density.
Resumo:
Purpose: The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Materials and Methods: Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N(.)cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer`s test (p < 0.05). Results: When both screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mu m) was significantly different (p < 0.05) from the group sectioned diagonally (18.92 +/- 4.75 mu m) but no different (p > 0.05) from the group transversally sectioned (31.42 +/- 20.68 mu m). On the tightened side, no significant differences were found between the groups (p > 0.05). Conclusions: Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.
Resumo:
A new species of the genus Acratosaura is described on the basis of two specimens obtained at the ""campos rupestres"" (rocky meadows) near Mucuge municipality, state of Bahia, Brazil. Acratosaura spinosa sp. nov., has ear openings and eyelids, pentadactyl limbs lacking a claw on first toe, a single frontonasal, prefrontals, frontoparietals, parietals, interparietals, occipitals, no collar fold, three pairs of genials, three supraoculars and three superciliaries and is further characterized by presenting 28-31 rows of strongly keeled, lanceolate and imbricate dorsal scales, sides of the neck with keeled scales, striate temporal scales, four longitudinal and 17-18 transverse rows of smooth ventral scales, 28-30 scales around the body, 14 and 19-20 infradigital lamellae under finger IV and toe IV, respectively, 13 total preanal and femoral pores in male, absent in female. The new species differs strikingly in color pattern from its only congener A. mentalis. The two species occur sympatricaly in the high altitude open habitats near the type locality.