980 resultados para Transportation -- Planning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transportation Department, Office of Transportation Planning Analysis, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urban Mass Transportation Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coast Guard, Strategic Planning Staff, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context Sensitive Solutions (CSS) is an interdisciplinary approach that seeks effective, multimodal transportation solutions by working with stakeholders to develop, build and maintain cost-effective transportation facilities which fit into and reflect the project's surroundings -- it's context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.