344 resultados para Transpiration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article discusses seasonal and interannual variations of the evapotranspiration (ET) rates in Bananal Island floodplain, Brazil. Measurements included ET and sensible heat flux using the eddy covariance method, atmospheric forcings (net radiation, Rn, vapor pressure deficit, VPD, wind speed and air temperature), soil moisture profiles, groundwater level and flood height, taken from November 2003 to December 2006. For the hydrological years (October-September) of 2003/2004, 2004/2005 and 2005/2006, the accumulated precipitation was 1692, 1471, 1914 mm and the accumulated ET was 1361, 1318 and 1317 mm, respectively. Seasonal analyses indicated that ET decreased in the dry season (average 3.7 mm day(-1)), despite the simultaneous increase in Rn, air temperature and VPD. The increase of ET in the wet season and particularly in the flood period (average 4.1 mm day(-1)) showed that the free water surface evaporation strongly influenced the energy exchange. Soil moisture, which was substantially depleted during the dry season, and adaptative vegetation mechanisms such as leaf senescence contributed to limit the dry season ET. Strong drainage within permeable sandy soils helped to explain the soil moisture depletion. These results suggest that the Bananal flooding area shows a different pattern in relation to the upland Amazon forests, being more similar to the savanna strictu senso areas in central Brazil. For example, seasonal ET variation was not in phase with Rn; the wet season ET was higher than the dry season ET; and the system stored only a tiny memory of the flooding period, being sensitive to extended drought periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:



A modified version of the popular agrohydrological model SWAP has been used to evaluate modelling of soil water flow and crop growth at field situations in which water repellency causes preferential flow. The parameter sensitivity in such situations has been studied. Three options to model soil water flow within SWAP are described and compared: uniform flow, the classical mobile-immobile concept, and a recent concept accounting for the dynamics of finger development resulting from unstable infiltration. Data collected from a severely water-repellent affected soil located in Australia were used to compare and evaluate the usefulness of the modelling options for the agricultural management of such soils.

The study shows that an assumption of uniform flow in a water-repellent soil profile leads to an underestimation of groundwater recharge and an overestimation of plant transpiration and crop production. The new concept of modelling taking finger dynamics into account provides greater flexibility and can more accurately model the observed effects of preferential flow compared with the classical mobile–immobile concept. The parameter analysis indicates that the most important factor defining the presence and extremity of preferential flow is the critical soil water content.

Comparison of the modelling results with the Australian field data showed that without the use of a preferential flow module, the effects of the clay amendments to the soil were insufficiently reproduced in the dry matter production results. This means that the physical characteristics of the soil alone are not sufficient to explain the measured increase in production on clay amended soils. However, modelling with the module accounting for finger dynamics indicated that the preferential flow in water repellent soils that had not been treated with clay caused water stress for the crops, which would explain the decrease in production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SWAT cannot accurately simulate the seasonal fluctuations or the long-term trend of the Leaf Area Index (LAI) of evergreen forests. This deficiency has detrimental impacts for the prediction of interception and transpiration, two processes that have a significant influence on catchment water yield. This paper details the integration of the forest growth model 3-PG with SWAT to improve the simulation of LAI for evergreen forests. The integrated model, called SWAT/3-PG, was applied to the Woady Yaloak River Catchment in southern Australia where eucalyptus forests and pine plantations account for 30% of the total land use. SWAT/3-PG simulated the LAI of eucalypts and pines more accurately and realistically than the original version of SWAT. Forest LAI simulated by SWAT/3-PG agreed reasonably well with estimates of forest LAI derived independently from a Landsat satellite image. SWAT/3- PG has considerable value as a tool that managers can utilise to predict the impacts of land use change in catchments where evergreen forests are prevalent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the Münch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation. Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the Münch theory and to investigate the phloem water relationship and turgor pressure regulation. © 2014 An et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se neste estudo avaliar a eficiência de controle de herbicidas inibidores da ACCase aplicados em pós-emergência em plantas de Eleusine indica submetidas a diferentes teores de água no solo. Os experimentos foram conduzidos em casa de vegetação, com a aplicação de três diferentes herbicidas (fluazifop-p-butil, haloxyfop-methyl e sethoxydim + óleo mineral Assist); o delineamento experimental utilizado para cada herbicida foi inteiramente casualizado, com quatro repetições, constituído de um fatorial 3 x 4, sendo a combinação de três manejos hídricos (-0,03, -0,07 e -1,5 MPa) e quatro doses desses produtos (100, 50, 25 e 0% da dose recomendada). Os parâmetros fisiológicos avaliados foram: taxa fotossintética, condutância estomática, transpiração, temperatura da folha e matéria seca das plantas. As avaliações visuais de fitotoxicidade foram realizadas aos 14 dias após a aplicação. Os manejos hídricos aplicados não influenciaram o controle das plantas nos tratamentos testados, com exceção do herbicida sethoxydim, que teve sua eficiência hídrica prejudicada quando da deficiência hídrica nas aplicações das doses fracionadas. A taxa fotossintética, a transpiração e a condutância estomática foram maiores em plantas submetidas ao manejo hídrico de 13%, as quais apresentaram as menores temperaturas foliares em relação à temperatura ambiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compararam-se os efeitos da enxertia nas trocas gasosas de dois híbridos de berinjela em pé franco e enxertado. Conduziu-se um ensaio em ambiente protegido, na FCA/UNESP, em estrutura simples, tipo arco com 7 m de largura, 40 m de comprimento e 3 m de pé direito, cobertos por filme plástico de 100 micrometros. Foram utilizados os híbridos de berinjela Nápoli e Kokuyo, enxertados em porta-enxerto específico (híbrido Taibyo VF) para esta espécie. O delineamento experimental utilizado foi inteiramente casualizado, com quatro tratamentos (Nápoli pé franco, Nápoli enxertada, Kokuyo pé franco e Kokuyo enxertada) com dez repetições. A assimilação líquida de CO2 (A), transpiração (E), condutância estomática (g s) e eficiência no uso de água (EUA), obtida pela relação (A/E), foram determinadas às 09:00; 12:00; 14:00 e 16:00 horas em um dia sem nebulosidade com fluxo de fótons fotossinteticamente ativos (FFFA) de 937±126 mmol m-2 s-1, com um sistema fechado portátil de fotossíntese, IRGA, modelo LI-6200 (LI-COR). Observou-se que as plantas do híbrido Kokuyo apresentaram maiores valores para as variáveis A, E, g s e EUA que o híbrido Nápoli. A enxertia não afetou a capacidade fotossintética dos híbridos, porém, esta resultou em menores valores de E e g s nos dois híbridos, levando à maior EUA, efeito este que na prática pode resultar em menor demanda de água pelas plantas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a relação entre o consumo de água pelas plantas de cana-de-açúcar e plantas daninhas e a absorção de herbicidas. O trabalho foi desenvolvido em dois experimentos: no primeiro, mediu-se o consumo de água através da pesagem diária das espécies de plantas daninhas Digitaria horizontalis, Panicum maximum, Ipomoea grandifolia, Ipomoea hederifolia, Brachiaria decumbens, assim como para os cultivares de cana-deaçúcar PO8862, SP80 3280 e RB83 5486; e, no segundo, foram determinadas as concentrações do amicarbazone, imazapic, tebuthiuron e hexazinone no xilema dos três cultivares de cana-deaçúcar e de I. grandifolia por meio da bomba de Schollander e de cromatografia e espectrometria de massas (LC-MS). A taxa de transpiração e, consequentemente, a taxa de consumo de água mostraram-se determinantes da taxa de absorção de herbicidas pelas plantas de diferentes espécies de plantas daninhas e cultivares de cana-de-açúcar. As concentrações de herbicidas na seiva do xilema foram variáveis em função da espécie e do herbicida em contato com o sistema radicular, indicando que a facilidade de absorção pelas raízes pode ser determinante para eficácia e/ou seletividade de herbicidas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M.R. Rocha-Pereira, A.E. Klar, D. Martins, G.S. Ferreira de Souza, and J. Villalba. 2012. Effect of water stress on herbicide efficiency applied to Urochloa decumbens. Cien. Inv. Agr. 39(1): 211-220. This project aimed to measure the control efficiency of Acctil Coenzime A Carboxilase (ACCase)-inhibiting herbicides post-emergence applied to Urochloa decumbens (Stapf) R.D. Webster under different soil water contents. The experiment was conducted in a greenhouse at the Department of Plant Production, Faculty of Agronomic Sciences, UNESP, Botucatu, Silo Paulo. The experimental design was a completely randomized design with four replications, consisting of a 9 x 4 factorial, combined with three water management systems (-0.03, -0.07 and -1.5 MPa) and three herbicides (fluazifop-p-butyl, haloxyfop-methyl and sethoxydim + oil using four doses (100, 50, 25 and 0% of the recommended dose). Herbicide applications were conducted at two vegetative stages for all species: a 4-6 leaf stage and a 2-3 tiller stage. The physiological parameters evaluated were as follows: photosynthetic rate, stomatal conductance, transpiration, leaf temperature and plant dry matter. The visual assessments of phytotoxicity were performed 28 days after herbicide application. The control efficiency was lower in plants grown under soil water potential conditions of -1.5 MPa, regardless of the herbicide used during the two application stages; however, none reached 100% control. Fractionation of the recommended herbicide doses reduced effectiveness, with the exception of the 50%-dose application of sethoxydim and fluazifop-p-butyl herbicides, which were also effective in the 4-6 leaf plant control under normal water conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to evaluate the effects of a simulated drift of glyphosate at different doses on some physiological characteristics of Eucalyptus grandis. A completely randomized design with five replications was used, where each pot contained an eucalyptus plant and was considered as one repetition. The plants received doses of glyphosate corresponding to 0, 30, 60, 90 and 120g.ha(-1), in the Scout (R) commercial formulation: The application was performed in three forms: leaves, stem and whole plant (leaf + stem). For foliar application, the stem was covered with plastic tape to avoid being hit by the solution, and leaves with a plastic bag when the stem was spayed. The application was performed by means of a steady spray gun equipped with four XR 11002 tips, with a pressure of 200Kpa and a volume of 2001 ha(-1). Stomatal conductance, transpiration and leaf temperature were measured at 7 days after application (DAA). The eucalypt plants receiving applications in leaves and whole plant showed, at the highest glyphosate dosis (120g.ha(-1)), a transpiration reduced by 22% and an 18% increase of stomatal resistance at 7 DAA. The lowest dose (30g-ha(-1)) applied to the whole plant caused a transpiration stimulation of 18%, and a leaf to air difference in temperature of -1.66 degrees C, while the difference between the highest and lowest dose used was 3.5 degrees C.