965 resultados para Transforming Growth Factor Beta
Resumo:
The transforming growth factor-β (TGFβ) and Wnt/wingless pathways play pivotal roles in tissue specification during development. Activation of Smads, the effectors of TGFβ superfamily signals, results in Smad translocation from the cytoplasm into the nucleus where they act as transcriptional comodulators to regulate target gene expression. Wnt/wingless signals are mediated by the DNA-binding HMG box transcription factors lymphoid enhancer binding factor 1/T cell-specific factor (LEF1/TCF) and their coactivator β-catenin. Herein, we show that Smad3 physically interacts with the HMG box domain of LEF1 and that TGFβ and Wnt pathways synergize to activate transcription of the Xenopus homeobox gene twin (Xtwn). Disruption of specific Smad and LEF1/TCF DNA-binding sites in the promoter abrogates synergistic activation of the promoter. Consistent with this observation, introduction of Smad sites into a TGFβ-insensitive LEF1/TCF target gene confers cooperative TGFβ and Wnt responsiveness to the promoter. Furthermore, we demonstrate that TGFβ-dependent activation of LEF1/TCF target genes can occur in the absence of β-catenin binding to LEF1/TCF and requires both Smad and LEF1/TCF DNA-binding sites in the Xtwn promoter. Thus, our results show that TGFβ and Wnt signaling pathways can independently or cooperatively regulate LEF1/TCF target genes and suggest a model for how these pathways can synergistically activate target genes.
Resumo:
Mutations of the VHL tumor suppressor gene occur in patients with VHL disease and in the majority of sporadic clear cell renal carcinomas (VHL−/− RCC). Loss of VHL protein function is associated with constitutive expression of mRNAs encoding hypoxia-inducible proteins, such as vascular endothelial growth factor. Overproduction of angiogenic factors might explain why VHL−/− RCC tumors are so highly vascularized, but whether this overproduction is sufficient for oncogenesis still remains unknown. In this report, we examined the activity of transforming growth factor-α (TGF-α), another VHL-regulated growth factor. We show that TGF-α mRNA and protein are hypoxia-inducible in VHL−/− RCC cells expressing reintroduced VHL. In addition to its overexpression by VHL−/− RCC cells, TGF-α can also act as a specific growth-stimulatory factor for VHL−/− RCC cells expressing reintroduced wild-type VHL, as well as primary renal proximal tubule epithelial cells, the likely site of origin of RCC. This role is in contrast to those of other growth factors overexpressed by VHL−/− RCC cells, such as vascular endothelial growth factor and TGF-β1, which do not stimulate RCC cell proliferation. A TGF-α-specific antisense oligodeoxynucleotide blocked TGF-α production in VHL−/− RCC cells, which led to the dependence of those cells on exogenous growth factors to sustain growth in culture. Growth of VHL−/− RCC cells was also significantly reduced by a drug that specifically inhibits the epidermal growth factor receptor, the receptor through which TGF-α stimulates proliferation. These results suggest that the generation of a TGF-α autocrine loop as a consequence of VHL inactivation in renal proximal tubule epithelial cells may provide the uncontrolled growth stimulus necessary for the initiation of tumorigenesis.
Resumo:
Similarities in the phenotypes of mice deficient for cytotoxic T lymphocyte antigen-4 (CTLA-4) or transforming growth factor-β1 (TGF-β1) and other observations have led to speculation that CTLA-4 mediates its inhibitory effect on T cell activation via costimulation of TGF-β production. Here, we examine the role of TGF-β in CTLA-4-mediated inhibition of T cell activation and of CTLA-4 in the regulation of TGF-β production. Activation of AND TCR transgenic mouse T cells with costimulatory receptor-specific antigen presenting cells results in efficient costimulation of proliferation by CD28 ligation and inhibition by CTLA-4 ligation. Neutralizing antibody to TGF-β does not reverse CTLA-4-mediated inhibition. Also, CTLA-4 ligation equally inhibits proliferation of wild-type, TGF-β1−/−, and Smad3−/− T cells. Further, CTLA-4 engagement does not result in the increased production of either latent or active TGF-β by CD4+ T cells. These results indicate that CTLA-4 ligation does not regulate TGF-β production and that CTLA-4-mediated inhibition can occur independently of TGF-β. Collectively, these data demonstrate that CTLA-4 and TGF-β represent distinct mechanisms for regulation of T cell responses.
Resumo:
Transforming growth factor-β1 (TGF-β) can be tumor suppressive, but it can also enhance tumor progression by stimulating the complex process of epithelial-to-mesenchymal transdifferentiaion (EMT). The signaling pathway(s) that regulate EMT in response to TGF-β are not well understood. We demonstrate the acquisition of a fibroblastoid morphology, increased N-cadherin expression, loss of junctional E-cadherin localization, and increased cellular motility as markers for TGF-β–induced EMT. The expression of a dominant-negative Smad3 or the expression of Smad7 to levels that block growth inhibition and transcriptional responses to TGF-β do not inhibit mesenchymal differentiation of mammary epithelial cells. In contrast, we show that TGF-β rapidly activates RhoA in epithelial cells, and that blocking RhoA or its downstream target p160ROCK, by the expression of dominant-negative mutants, inhibited TGF-β–mediated EMT. The data suggest that TGF-β rapidly activates RhoA-dependent signaling pathways to induce stress fiber formation and mesenchymal characteristics.
Resumo:
Although transforming growth factor-β (TGF-β) has been identified to mainly inhibit cell growth, the correlation of elevated TGF-β with increasing serum prostate-specific antigen (PSA) levels in metastatic stages of prostate cancer has also been well documented. The molecular mechanism for these two contrasting effects of TGF-β, however, remains unclear. Here we report that Smad3, a downstream mediator of the TGF-β signaling pathway, functions as a coregulator to enhance androgen receptor (AR)-mediated transactivation. Compared with the wild-type AR, Smad3 acts as a strong coregulator in the presence of 1 nM 5α-dihydrotestosterone, 10 nM 17β-estradiol, or 1 μM hydroxyflutamide for the LNCaP mutant AR (mtAR T877A), found in many prostate tumor patients. We further showed that endogenous PSA expression in LNCaP cells can be induced by 5α-dihydrotestosterone, and the addition of the Smad3 further induces PSA expression. Together, our findings establish Smad3 as an important coregulator for the androgen-signaling pathway and provide a possible explanation for the positive role of TGF-β in androgen-promoted prostate cancer growth.
Resumo:
Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.
Resumo:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by endocrine tumors of parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene encodes a nuclear protein called menin. In MEN1 carriers inactivating mutations give rise to a truncated product consistent with menin acting as a tumor suppressor gene. However, the role of menin in tumorigenesis and its physiological functions are not known. Here, we show that menin inactivation by antisense RNA antagonizes transforming growth factor type β-mediated cell growth inhibition. Menin interacts with Smad3, and antisense menin suppresses transforming growth factor type β-induced and Smad3-induced transcriptional activity by inhibiting Smad3/4-DNA binding at specific transcriptional regulatory sites. These results implicate a mechanism of tumorigenesis by menin inactivation.
Resumo:
Failures to arrest growth in response to senescence or transforming growth factor β (TGF-β) are key derangements associated with carcinoma progression. We report that activation of telomerase activity may overcome both inhibitory pathways. Ectopic expression of the human telomerase catalytic subunit, hTERT, in cultured human mammary epithelial cells (HMEC) lacking both telomerase activity and p16INK4A resulted in gaining the ability to maintain indefinite growth in the absence and presence of TGF-β. The ability to maintain growth in TGF-β was independent of telomere length and required catalytically active telomerase capable of telomere maintenance in vivo. The capacity of ectopic hTERT to induce TGF-β resistance may explain our previously described gain of TGF-β resistance after reactivation of endogenous telomerase activity in rare carcinogen-treated HMEC. In those HMEC that overcame senescence, both telomerase activity and TGF-β resistance were acquired gradually during a process we have termed conversion. This effect of hTERT may model a key change occurring during in vivo human breast carcinogenesis.
Resumo:
Smad proteins are cytoplasmic signaling effectors of transforming growth factor-β (TGF-β) family cytokines and regulate gene transcription in the nucleus. Receptor-activated Smads (R-Smads) become phosphorylated by the TGF-β type I receptor. Rapid and precise transport of R-Smads to the nucleus is of crucial importance for signal transduction. By focusing on the R-Smad Smad3 we demonstrate that 1) only activated Smad3 efficiently enters the nucleus of permeabilized cells in an energy- and cytosol-dependent manner. 2) Smad3, via its N-terminal domain, interacts specifically with importin-β1 and only after activation by receptor. In contrast, the unique insert of exon3 in the N-terminal domain of Smad2 prevents its association with importin-β1. 3) Nuclear import of Smad3 in vivo requires the action of the Ran GTPase, which mediates release of Smad3 from the complex with importin-β1. 4) Importin-β1, Ran, and p10/NTF2 are sufficient to mediate import of activated Smad3. The data describe a pathway whereby Smad3 phosphorylation by the TGF-β receptor leads to enhanced interaction with importin-β1 and Ran-dependent import and release into the nucleus. The import mechanism of Smad3 shows distinct features from that of the related Smad2 and the structural basis for this difference maps to the divergent sequences of their N-terminal domains.
Resumo:
Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.
Resumo:
Septic shock is a cytokine-mediated process typically caused by a severe underlying infection. Toxins generated by the infecting organism trigger a cascade of events leading to hypotension, to multiple organ system failure, and frequently to death. Beyond supportive care, no effective therapy is available for the treatment of septic shock. Nitric oxide (NO) is a potent vasodilator generated late in the sepsis pathway leading to hypotension; therefore, NO represents a potential target for therapy. We have previously demonstrated that transforming growth factor (TGF) beta1 inhibits inducible NO synthase (iNOS) mRNA and NO production in vascular smooth muscle cells after its induction by cytokines critical in the sepsis cascade. Thus, we hypothesized that TGF-beta1 may inhibit iNOS gene expression in vivo and be beneficial in the treatment of septic shock. In a conscious rat model of septic shock produced by Salmonella typhosa lipopolysaccharide (LPS), TGF-beta1 markedly reduced iNOS mRNA and protein levels in several organs. In contrast, TGF-beta1 did not decrease endothelium-derived constitutive NOS mRNA in organs of rats receiving LPS. We also performed studies in anesthetized rats to evaluate the effect of TGF-beta1 on the hemodynamic compromise of septic shock; after an initial 25% decrease in mean arterial pressure, TGF-beta1 arrested LPS-induced hypotension and decreased mortality. A decrease in iNOS mRNA and protein levels in vascular smooth muscle cells was demonstrated by in situ hybridization and NADPH diaphorase staining in rats treated with TGF-beta1. Thus these studies suggest that TGF-beta1 inhibits iNOS in vivo and that TGF-beta1 may be of future benefit in the therapy of septic shock.
Resumo:
Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.
Resumo:
Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.