955 resultados para Traction-engines.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The harsh environment presented by engines, particularly in the exhaust systems, often necessitates the use of robust and therefore low bandwidth temperature sensors. Consequently, high frequencies are attenuated in the output. One technique for addressing this problem involves measuring the gas temperature using two sensors with different time-constants and mathematically reconstructing the true gas temperature from the resulting signals. Such a technique has been applied in gas turbine, rocket motor and combustion research. A new reconstruction technique based on difference equations has been developed and its effectiveness proven theoretically. The algorithms have been successfully tested and proven on experimental data from a rig that produces cyclic temperature variations. These tests highlighted that the separation of the thermocouple junctions must be very small to ensure that both sensors are subjected to the same gas temperatures. Exhaust gas temperatures were recorded by an array of thermocouples during transient operation of a high performance two-stroke engine. The results show that the increase in bandwidth arising from the dual sensor technique allowed accurate measurement of exhaust gas temperature with relatively robust thermocouples. Finally, an array of very fine thermocouples (12.5 - 50 microns) was used to measure the in-cycle temperature variation in the exhaust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum group metal catalysts have been investigated for the formation of NH3 from NO + H-2 at low temperatures in the absence and presence of CO. Although CO inhibits the formation of NH3, substantial amounts are still observed with a Pt catalyst. By combining Pt with a support (ceria-zirconia) that has low temperature NOx storage characteristics it has been shown in transient experiments that NH3 can be formed and stored in situ under rich conditions, and may then be used to reduce NOx under lean burn conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.