960 resultados para Tracking performance
Resumo:
A case study of Atlantic Salmon runs into the R. Tyvi (S. Wales) is presented. Radio tracking of over 200 salmon in 1988 and 1989 has demonstrated that flow is an important factor in modifying both run timing and migratory success. Entry of salmon into the river is typically in response to flow events, and periods of low falling flows delay entry and may directly result in reduced runs into the river. Delayed entry may also increase the proportion of the run migrating after the end of both rod and net fishing seasons. The implications of these results for net and rod catch and catch/effort data are discussed, using both statutory reported catch data and data from specific catch/effort studies. Flow is demonstrated to be a dominant factor in determining the within-season distribution of rod catch and catch/effort during low-flow years. Estuarial seine net catch and catch/effort tend to be controlled more by time of return than by flow although low flows may delay runs. Annual reported rod catch is correlated with flow, which controls in season availability, catchability and consequently the amount of fishing effort. Use of catch or catch/effort data should take account of inter-year variations in flow and other environmental factors. Although catch and catch/effort are valuable indicators of fishery performance, they are inadequate to represent changing stock levels.
Resumo:
We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.
Resumo:
Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.
Resumo:
The contribution described in this paper is an algorithm for learning nonlinear, reference tracking, control policies given no prior knowledge of the dynamical system and limited interaction with the system through the learning process. Concepts from the field of reinforcement learning, Bayesian statistics and classical control have been brought together in the formulation of this algorithm which can be viewed as a form of indirect self tuning regulator. On the task of reference tracking using a simulated inverted pendulum it was shown to yield generally improved performance on the best controller derived from the standard linear quadratic method using only 30 s of total interaction with the system. Finally, the algorithm was shown to work on the simulated double pendulum proving its ability to solve nontrivial control tasks. © 2011 IEEE.
Resumo:
Tracking methods have the potential to retrieve the spatial location of project related entities such as personnel and equipment at construction sites, which can facilitate several construction management tasks. Existing tracking methods are mainly based on Radio Frequency (RF) technologies and thus require manual deployment of tags. On construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. To address these limitations, this paper proposes an alternate 3D tracking method based on vision. It operates by tracking the designated object in 2D video frames and correlating the tracking results from multiple pre-calibrated views using epipolar geometry. The methodology presented in this paper has been implemented and tested on videos taken in controlled experimental conditions. Results are compared with the actual 3D positions to validate its performance.
Resumo:
Vision-based object detection has been introduced in construction for recognizing and locating construction entities in on-site camera views. It can provide spatial locations of a large number of entities, which is beneficial in large-scale, congested construction sites. However, even a few false detections prevent its practical applications. In resolving this issue, this paper presents a novel hybrid method for locating construction equipment that fuses the function of detection and tracking algorithms. This method detects construction equipment in the video view by taking advantage of entities' motion, shape, and color distribution. Background subtraction, Haar-like features, and eigen-images are used for motion, shape, and color information, respectively. A tracking algorithm steps in the process to make up for the false detections. False detections are identified by catching drastic changes in object size and appearance. The identified false detections are replaced with tracking results. Preliminary experiments show that the combination with tracking has the potential to enhance the detection performance.
Resumo:
We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present an expectation-maximisation (EM) algorithm for maximum likelihood estimation in multiple target models (MTT) with Gaussian linear state-space dynamics. We show that estimation of sufficient statistics for EM in a single Gaussian linear state-space model can be extended to the MTT case along with a Monte Carlo approximation for inference of unknown associations of targets. The stochastic approximation EM algorithm that we present here can be used along with any Monte Carlo method which has been developed for tracking in MTT models, such as Markov chain Monte Carlo and sequential Monte Carlo methods. We demonstrate the performance of the algorithm with a simulation. © 2012 ISIF (Intl Society of Information Fusi).
Resumo:
We present novel batch and online (sequential) versions of the expectation-maximisation (EM) algorithm for inferring the static parameters of a multiple target tracking (MTT) model. Online EM is of particular interest as it is a more practical method for long data sets since in batch EM, or a full Bayesian approach, a complete browse of the data is required between successive parameter updates. Online EM is also suited to MTT applications that demand real-time processing of the data. Performance is assessed in numerical examples using simulated data for various scenarios. For batch estimation our method significantly outperforms an existing gradient based maximum likelihood technique, which we show to be significantly biased. © 2014 Springer Science+Business Media New York.
Resumo:
This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.
Resumo:
This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.
Resumo:
A novel approach for estimating articulated body posture and motion from monocular video sequences is proposed. Human pose is defined as the instantaneous two dimensional configuration (i.e., the projection onto the image plane) of a single articulated body in terms of the position of a predetermined set of joints. First, statistical segmentation of the human bodies from the background is performed and low-level visual features are found given the segmented body shape. The goal is to be able to map these, generally low level, visual features to body configurations. The system estimates different mappings, each one with a specific cluster in the visual feature space. Given a set of body motion sequences for training, unsupervised clustering is obtained via the Expectation Maximation algorithm. Then, for each of the clusters, a function is estimated to build the mapping between low-level features to 3D pose. Currently this mapping is modeled by a neural network. Given new visual features, a mapping from each cluster is performed to yield a set of possible poses. From this set, the system selects the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input. Performance of the proposed approach is characterized using a new set of known body postures, showing promising results.
Resumo:
In professional sports there are in general three steps required to improve performance namely task definition, training and performance assessment. This process is iteratively repeated and feedback generated from quantitative performance measurement is in turn used for task redefinition. Task definition can be achieved in a number of ways including via video streaming or indeed and as is more common, by listening to coaching staff. However non-subjective performance evaluation is difficult due to the complexity of the movements involved. When considering the subset of sports where precision accuracy and repeatability are a necessity this problem becomes inherently more difficult to solve. Until recently sports such as martial arts, fencing and darts, where the smallest deviation from a prescribed movement goal can result in large outcome error, were deemed too difficult to characterise fully. Advances in technology, as illustrated by this study, now make this type of physiometry possible.
Resumo:
This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with permanently magnetised distal attachments is investigated. Catheter models formed from various materials and magnetic tip formations are used to examine the usefulness of relatively low power and compact electromagnets. The force and torque that can be exerted on a small permanent magnet is shown to be extremely limited. Hence, after this initial investigation we turn our attention to electromagnetic tracking, in the development of a novel, low-cost implementation of a GPS-like system for navigating within a patient. A planar magnetic transmitter, formed on a printed circuit board for a low-profile and low cost manufacture, is used to generate a low frequency magnetic field distribution which is detected by a small induction coil sensor. The field transmitter is controlled by a novel closed-loop system that ensures a highly stable magnetic field with reduced interference from one transmitter coil to another. Efficient demodulation schemes are presented which utilise synchronous detection of each magnetic field component experienced by the sensor. The overall tracking accuracy of the system is shown to be less than 2 mm with an orientation error less than 1°. A novel demodulation implementation using a unique undersampling approach allows the use of reduced sample rates to sample the signals of interest without loss of tracking accuracy. This is advantageous for embedded microcontroller implementations of EM tracking systems. The EM tracking system is demonstrated in the pre-clinical environment of a breathing lung phantom. The airways of the phantom are successfully navigated using the system in combination with a 3D computer model rendered from CT data. Registration is achieved using both a landmark rigid registration method and a hybrid fiducial-free approach. The design of a planar magnetic shield structure for blocking the effects of metallic distortion from below the transmitter is presented which successfully blocks the impact of large ferromagnetic objects such as operating tables. A variety of shielding material are analysed with MuMetal and ferrite both providing excellent shieling performance and an increased signal to noise ratio. Finally, the effect of conductive materials and human tissue on magnetic field measurements is presented. Error due to induced eddy currents and capacitive coupling is shown to severely affect EM tracking accuracy at higher frequencies.
Resumo:
Over the last decade, multi-touch devices (MTD) have spread in a range of contexts. In the learning context, MTD accessibility leads more and more teachers to use them in their classroom, assuming that it will improve the learning activities. Despite a growing interest, only few studies have focused on the impacts of MTD use in terms of performance and suitability in a learning context.However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing), we notice that the use of MTD may lead to a less favorable outcome. More precisely, tasks that require users to generate complex and/or less common gestures may increase extrinsic cognitive load and impair performance, especially for intrinsically complex tasks. It is hypothesized that task and gesture complexity will affect users’ cognitive resources and decrease task efficacy and efficiency. Because MTD are supposed to be more appealing, it is assumed that it will also impact cognitive absorption. The present study also takes into account user’s prior knowledge concerning MTD use and gestures by using experience with MTD as a moderator. Sixty university students were asked to perform information search tasks on an online encyclopedia. Tasks were set up so that users had to generate the most commonly used mouse actions (e.g. left/right click, scrolling, zooming, text encoding…). Two conditions were created: MTD use and laptop use (with mouse and keyboard) in order to make a comparison between the two devices. An eye tracking device was used to measure user’s attention and cognitive load. Our study sheds light on some important aspects towards the use of MTD and the added value compared to a laptop in a student learning context.