995 resultados para Toxicity Tests
Resumo:
Recent reports of contamination of the Great Barrier Reef Marine Park by herbicides used in antifouling paints and in agriculture have caused concern over the possible effects on corals in nearshore areas. Pulse-Amplitude Modulated (PAM) chlorophyll fluorescence techniques were used to examine changes in the maximum effective quantum yield (ΔF/Fm′) of symbiotic dinoflagellates within the host tissues (in hospite) of the coral Seriatopora hystrix exposed to a number of Photosystem II (PSII) inhibiting herbicides in short-term toxicity tests. The concentration of herbicide required to reduce ΔF/Fm′ by 50% (median effective concentration [EC50]) differed by over 2 orders of magnitude: Irgarol 1051 (0.7 μg l-1) > ametryn (1.7 μg l-1) > diuron (2.3 μg l-1) > hexazinone (8.8 μg l -1) > atrazine (45 μg l-1) > simazine (150 μg l-1) > tebuthiuron (175 μg l-1) > ionynil (> 1 mg l-1). Similar absolute and relative toxicities were observed with colonies of the coral Acropora formosa (Irgarol 1051 EC50: 1.3 μg l-1, diuron EC50: 2.8 μg l-1), Time-course experiments indicated that ΔF/Fm′ was rapidly reduced (i.e. within minutes) in S. hystrix exposed to Irgarol 1051 and diuron. On return to fresh running seawater, ΔF/Fm′ recovered quickly in diuron-exposed corals (i.e. in minutes to hours), but slowly in corals exposed to Irgarol 1051 (i.e. hours to days). Time-course experiments indicated that the effects of diuron (3 μg l-1) on S. hystrix were inversely related to temperature over the range 20 to 30 °C, although initially the effects were less at the lower temperatures. Repeated exposure to pulses of Irgarol 1051 (daily 2 h exposure to 30 μg l -1 over 4 d) resulted in a 30% decrease in the density of symbiotic dinoflagellates in the tissues of S. hystrix.
Resumo:
Freshwater is extremely precious; but even more precious than freshwater is clean freshwater. From the time that 2/3 of our planet is covered in water, we have contaminated our globe with chemicals that have been used by industrial activities over the last century in a unprecedented way causing harm to humans and wildlife. We have to adopt a new scientific mindset in order to face this problem so to protect this important resource. The Water Framework Directive (European Parliament and the Council, 2000) is a milestone legislative document that transformed the way that water quality monitoring is undertaken across all Member States by introducing the Ecological and Chemical Status. A “good or higher” Ecological Status is expected to be achieved for all waterbodies in Europe by 2015. Yet, most of the European waterbodies, which are determined to be at risk, or of moderate to bad quality, further information will be required so that adequate remediation strategies can be implemented. To date, water quality evaluation is based on five biological components (phytoplankton, macrophytes and benthic algae, macroinvertebrates and fishes) and various hydromorphological and physicochemical elements. The evaluation of the chemical status is principally based on 33 priority substances and on 12 xenobiotics, considered as dangerous for the environment. This approach takes into account only a part of the numerous xenobiotics that can be present in surface waters and could not evidence all the possible causes of ecotoxicological stress that can act in a water section. The mixtures of toxic chemicals may constitute an ecological risk not predictable on the basis of the single component concentration. To improve water quality, sources of contamination and causes of ecological alterations need to be identified. On the other hand, the analysis of the community structure, which is the result of multiple processes, including hydrological constrains and physico-chemical stress, give back only a “photograph” of the actual status of a site without revealing causes and sources of the perturbation. A multidisciplinary approach, able to integrate the information obtained by different methods, such as community structure analysis and eco-genotoxicological studies, could help overcome some of the difficulties in properly identifying the different causes of stress in risk assessment. In synthesis, the river ecological status is the result of a combination of multiple pressures that, for management purposes and quality improvement, have to be disentangled from each other. To reduce actual uncertainty in risk assessment, methods that establish quantitative links between levels of contamination and community alterations are needed. The analysis of macrobenthic invertebrate community structure has been widely used to identify sites subjected to perturbation. Trait-based descriptors of community structure constitute a useful method in ecological risk assessment. The diagnostic capacity of freshwater biomonitoring could be improved by chronic sublethal toxicity testing of water and sediment samples. Requiring an exposure time that covers most of the species’ life cycle, chronic toxicity tests are able to reveal negative effects on life-history traits at contaminant concentrations well below the acute toxicity level. Furthermore, the responses of high-level endpoints (growth, fecundity, mortality) can be integrated in order to evaluate the impact on population’s dynamics, a highly relevant endpoint from the ecological point of view. To gain more accurate information about potential causes and consequences of environmental contamination, the evaluation of adverse effects at physiological, biochemical and genetic level is also needed. The use of different biomarkers and toxicity tests can give information about the sub-lethal and toxic load of environmental compartments. Biomarkers give essential information about the exposure to toxicants, such as endocrine disruptor compounds and genotoxic substances whose negative effects cannot be evidenced by using only high-level toxicological endpoints. The increasing presence of genotoxic pollutants in the environment has caused concern regarding the potential harmful effects of xenobiotics on human health, and interest on the development of new and more sensitive methods for the assessment of mutagenic and cancerogenic risk. Within the WFD, biomarkers and bioassays are regarded as important tools to gain lines of evidence for cause-effect relationship in ecological quality assessment. Despite the scientific community clearly addresses the advantages and necessity of an ecotoxicological approach within the ecological quality assessment, a recent review reports that, more than one decade after the publication of the WFD, only few studies have attempted to integrate ecological water status assessment and biological methods (namely biomarkers or bioassays). None of the fifteen reviewed studies included both biomarkers and bioassays. The integrated approach developed in this PhD Thesis comprises a set of laboratory bioassays (Daphnia magna acute and chronic toxicity tests, Comet Assay and FPG-Comet) newly-developed, modified tacking a cue from standardized existing protocols or applied for freshwater quality testing (ecotoxicological, genotoxicological and toxicogenomic assays), coupled with field investigations on macrobenthic community structures (SPEAR and EBI indexes). Together with the development of new bioassays with Daphnia magna, the feasibility of eco-genotoxicological testing of freshwater and sediment quality with Heterocypris incongruens was evaluated (Comet Assay and a protocol for chronic toxicity). However, the Comet Assay, although standardized, was not applied to freshwater samples due to the lack of sensitivity of this species observed after 24h of exposure to relatively high (and not environmentally relevant) concentrations of reference genotoxicants. Furthermore, this species demonstrated to be unsuitable also for chronic toxicity testing due to the difficult evaluation of fecundity as sub-lethal endpoint of exposure and complications due to its biology and behaviour. The study was applied to a pilot hydrographic sub-Basin, by selecting section subjected to different levels of anthropogenic pressure: this allowed us to establish the reference conditions, to select the most significant endpoints and to evaluate the coherence of the responses of the different lines of evidence (alteration of community structure, eco-genotoxicological responses, alteration of gene expression profiles) and, finally, the diagnostic capacity of the monitoring strategy. Significant correlations were found between the genotoxicological parameter Tail Intensity % (TI%) and macrobenthic community descriptors SPEAR (p<0.001) and EBI (p<0.05), between the genotoxicological parameter describing DNA oxidative stress (ΔTI%) and mean levels of nitrates (p<0.01) and between reproductive impairment (Failed Development % from D. magna chronic bioassays) and TI% (p<0.001) as well as EBI (p<0.001). While correlation among parameters demonstrates a general coherence in the response to increasing impacts, the concomitant ability of each single endpoint to be responsive to specific sources of stress is at the basis of the diagnostic capacity of the integrated approach as demonstrated by stations presenting a mismatch among the different lines of evidence. The chosen set of bioassays, as well as the selected endpoints, are not providing redundant indications on the water quality status but, on the contrary, are contributing with complementary pieces of information about the several stressors that insist simultaneously on a waterbody section providing this monitoring strategy with a solid diagnostic capacity. Our approach should provide opportunities for the integration of biological effects into monitoring programmes for surface water, especially in investigative monitoring. Moreover, it should provide a more realistic assessment of impact and exposure of aquatic organisms to contaminants. Finally this approach should provide an evaluation of drivers of change in biodiversity and its causalities on ecosystem function/services provision, that is the direct and indirect contributions to human well-being.
Resumo:
The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.
Resumo:
Some of the factors affecting colonisation of a colonisation sampler, the Standard Aufwuchs Unit (S. Auf. U.) were investigated, namely immersion period, whether anchored on the bottom or suspended, and the influence of riffles. It was concluded that a four-week immersion period was best. S. Auf. U. anchored on the bottom collected both more taxa and individuals than suspended ones. Fewer taxa but more individuals colonised S. Auf. U. in the potamon zone compared to the rhithron zone with a consequent reduction in the values of pollution indexes and diversity. It was concluded that a completely different scoring system was necessary for lowland rivers. Macroinvertebrates colonising S. Auf. U. in simulated streams, lowland rivers and the R. Churnet reflected water quality. A variety of pollution and diversity indexes were applied to results from lowland river sites. Instead of these, it was recommended that an abbreviated species - relative abundance list be used to summarise biological data for use in lowland river surveillance. An intensive study of gastropod populations was made in simulated streams. Lynnaea peregra increased in abundance whereas Potamopyrgas jenkinsi decreased with increasing sewage effluent concentration. No clear-cut differences in reproduction were observed. The presence/absence of eight gastropod taxa was compared with concentrations of various pollutants in lowland rivers. On the basis of all field work it appeared that ammonia, nitrite, copper and zinc were the toxicants most likely to be detrimental to gastropods and that P. jenkinsi and Theodoxus fluviatilis were the least tolerant taxa. 96h acute toxicity tests of P. jenkinsi using ammonia and copper were carried out in a flow-through system after a variety of static range finding tests. P. jenkinsi was intolerant to both toxicants compared to reports on other taxa and the results suggested that these toxicants would affect distribution of this species in the field.
Resumo:
Haloclean a performance enhanced low temperature pyrolysis for biomass developed by Forschungszentrum Karlsruhe and Sea Marconi Is closing the gap between classical and fast pyrolysis approaches. For pyrolysis of straw (chaffed-, finely ground and pellets) temperature ranges between 320 to 420°C and residence times of only 1 to 5 minutes can be realized. Liquid yields of up to 45 wt-% and 35 wt-% of solids are possible. Solid yields can be increased up to 73 wt-% while loosing 4.5 % of the feed energy by pyrolysis gases only. Toxicity tests of the fractions do not show relevant numbers.
Resumo:
The therapeutic use of medicinal plants has contributed since antiquity in a beneficial way for health. However, many species lacks of scientific evidence which provide basis for their use in therapeutic practice. In this context is the Genipa americana L. species (Rubiaceae), popularly known as jenipapo and used to treat syfilis, ulcer and hemorrhagic disturbs. It's also used against bruising, as tonic and as aphrodisiac. Due this species lacks toxicological studies, the aim of this study was to evaluate the toxicity in vivo (acute and sub-chronic toxicity) and in vitro (cytotoxicity) of the hydroethanolic extract from G. americana fruits. The hydroethanolic extract of G. americana fruits was prepared by maceration. A preliminary phytochemical analysis was performed to assess the presence of secondary metabolites in the extract. The cytotoxicity study of the extract (0.1, 1.0, 10, 100 and 1000 mg / 100 ul) were performed against normal cells (3T3) and tumor (786-0, HepG2 and B16), analyzed by the MTT assay. To evaluate the acute (single dose of 2000 mg / Kg) and subchronic (100, 500 and 1000 mg / kg for 30 days) toxicity Swiss mice of both sexes were used. At the end of the experiment, blood samples and organs were collected for analysis. Data between groups were compared by t test or ANOVA with Dunnett's post-test with 5% significance level. The phytochemical study of the extracts mainly indicated the presence of iridoids. Results for cytotoxicity tests showed up to 70% inhibition of B16 cell line at a dose of 1000 mg / 100 ul, and up to 29% inhibition of 786-0 at a dose of 10 ug / 100 ul. The extract did not cause death in 3T3 and HepG2 cells. During the in vivo assays, there were no animal deaths. Analysis of blood samples revealed that the animals submitted to the evaluation of acute toxicity had changes in AST and ALT, and that the animals evaluated for subchronic toxicity showed changes in the relative wet weight of the kidney and plasma urea concentration. No differences were observed between groups on histopathological evaluation of the collected organs. Despite the changes found in the in vivo toxicity tests, using the criteria described by the OECD Guidelines, it is suggested that the hydroethanolic extract of the fruits of the G. americana is classified as low toxicity. The cytotoxicity of the extract suggests that they have potential against melanoma cell lines (B16).
Resumo:
The therapeutic use of medicinal plants has contributed since antiquity in a beneficial way for health. However, many species lacks of scientific evidence which provide basis for their use in therapeutic practice. In this context is the Genipa americana L. species (Rubiaceae), popularly known as jenipapo and used to treat syfilis, ulcer and hemorrhagic disturbs. It's also used against bruising, as tonic and as aphrodisiac. Due this species lacks toxicological studies, the aim of this study was to evaluate the toxicity in vivo (acute and sub-chronic toxicity) and in vitro (cytotoxicity) of the hydroethanolic extract from G. americana fruits. The hydroethanolic extract of G. americana fruits was prepared by maceration. A preliminary phytochemical analysis was performed to assess the presence of secondary metabolites in the extract. The cytotoxicity study of the extract (0.1, 1.0, 10, 100 and 1000 mg / 100 ul) were performed against normal cells (3T3) and tumor (786-0, HepG2 and B16), analyzed by the MTT assay. To evaluate the acute (single dose of 2000 mg / Kg) and subchronic (100, 500 and 1000 mg / kg for 30 days) toxicity Swiss mice of both sexes were used. At the end of the experiment, blood samples and organs were collected for analysis. Data between groups were compared by t test or ANOVA with Dunnett's post-test with 5% significance level. The phytochemical study of the extracts mainly indicated the presence of iridoids. Results for cytotoxicity tests showed up to 70% inhibition of B16 cell line at a dose of 1000 mg / 100 ul, and up to 29% inhibition of 786-0 at a dose of 10 ug / 100 ul. The extract did not cause death in 3T3 and HepG2 cells. During the in vivo assays, there were no animal deaths. Analysis of blood samples revealed that the animals submitted to the evaluation of acute toxicity had changes in AST and ALT, and that the animals evaluated for subchronic toxicity showed changes in the relative wet weight of the kidney and plasma urea concentration. No differences were observed between groups on histopathological evaluation of the collected organs. Despite the changes found in the in vivo toxicity tests, using the criteria described by the OECD Guidelines, it is suggested that the hydroethanolic extract of the fruits of the G. americana is classified as low toxicity. The cytotoxicity of the extract suggests that they have potential against melanoma cell lines (B16).
Resumo:
The industrial effluents are one of the main sources of water pollution. For an appropriate characterization and control of their discharges, the most efficient strategy is the integrated use of chemical, physical and ecotoxicological analyses. The aims of this study were to asses the efficiency of the treatment plant of a textile industry performing acute toxicity tests and physical-chemical analyses of the effluents before and after the treatment, besides evaluate the toxicity of the effluents of the Treatment System of Liquids Effluents (Sistema de Tratamento de Efluentes Líquidos - SITEL) of Distrito Industrial de Natal (DIN) and some of their physical-chemical variables. The species used in the ecotoxicological tests was the fish Danio rerio. The results showed that the treatment plant reduced significantly (around 50%) the toxicity of the raw textile effluent in only three of the seven tests but, in general, it promoted the reduction of the physical-chemical parameters analyzed. The toxicity and the physical-chemical factors of the effluents of SITEL of DIN varied among the tests and show the importance of monitoring their discharges in the Potengi river, one of the most important rivers of the Rio Grande do Norte state
Resumo:
The objectives of this research were to investigate the agrotoxic most used in the Gramorezinho region in the green belt of Natal, and to evaluate the acute toxicity of these, based on the LC50-48h values estimated in tests for Danio rerio, internationally used as test organism. The acute toxicity tests were performed under laboratory conditions, according to standardized methods (ABNT/NBR/15088/04) for this species. The LC50-48h estimated to Tamaron BR was 352.89 mg.L-1, which characterizes that as practically non-toxic, according to toxicological classes cited by Zucker. For Decis 25EC, the LC50-48h estimated was 0.0004156 mg.L-1 (4.156 X 10-4 mg.L-1), which classifies it as highly toxic to this species
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
Aquatic ecosystems are final collectors of all kinds of pollution as an outcome of anthropogenic inputs, such us untreated industrial and municipal sewage and agricultural pollutants. There are several aquatic ecosystems that are threatened by mineral and organic pollution. In Northeastern Portugal, near Bragança, different watercourses are suffering negative impacts of human activities. It has been developed several studies in the monitoring of environmental impacts in these river basins, namely in Rio Fervença, affected by organic pollution, and in Portelo stream, affected, since 2009, by the collapse and continuous input of mining deposits. In this sense, the present study aimed to continue the monitoring study of ecological status of freshwater ecosystems of Northeastern Portugal, namely the following objectives: a) mineral pollution effects of mining deposits sudden incorporated into Portelo stream; b) organic pollution due to domestic and industrial inputs in River Fervença. Also, since fish are useful experimental models to evaluate toxicological mechanisms of contaminants, c) acute toxicity tests with Cu were conducted in laboratory conditions. During 2015/2016, it was made abiotic and biotic characterization of 16 sampling sites distributed by both Portelo and Fervença rivers, tributaries of main River Sabor (Douro Basin). Several physicochemical parameters were determined and Riparian Quality (QBR Index) and Channel Quality (GQC) Indexes were determined for habitat evaluation. Fish and invertebrate communities were sampled, according to protocols of Water Framework Directive (WFD). Several metrics were determined, with particular emphasis on the Biotic Index IBMWP and the Northern Portuguese Invertebrate Index (IPtIN). Acute toxicity tests were conducted with an Iberian fish species, common barbel (Luciobarbus bocagei) and some plasmatic electrolytes levels were evaluated, to assess their contribution to mitigate osmoregulatory adverse effects of Cu. Also, same electrolytes were measured after changing to clean water, in attempt to assess fish capacity to reverse this situation. Results obtained for both rivers showed a significant level of disturbance that affected decisively water, habitat and biological quality of aquatic ecosystems. Mineral and Organic Pollution in River Sabor (NE Portugal): Ecotoxicological Effects on Freshwater Fauna Due to this change of environmental conditions in Portelo stream (extreme pH values, high conductivity and presence of heavy metals), several biological metrics (e.g. taxonomic richness, abundance, diversity, evenness) confirmed, comparatively with reference sites, a substantial decrease on ecological integrity status. The same pattern was found for Fervença River; however other water parameters, namely the content of most limiting nutrients (e.g. N and P) seemed to have more influence in the composition and structure of macroinvertebrate and fish communities. In fact, despite the operation of the Sewage Treatment Plant of Bragança, Fervença River presented significant levels of disturbance that affected decisively the quality and ecological integrity of the aquatic ecosystem. The synergic effect of domestic and industrial pollution, intensive agriculture, regulation and degradation of aquatic and riparian habitats contributed to the decrease of ecological condition, namely in the downstream zones (after Bragança). The results for acute toxicity, showed that fish can change Na+ and K+ levels face to Cu exposition and, depending of Cu concentration tested, can also return to normal levels, providing some insights to that are believed to occurred in fish population, near the Portelo mines. The low ecological integrity status detected in the lotic ecosystems in NE Portugal as a result of mineral and organic pollution deserves the development of several measures for rehabilitation and improving of water quality. On the other hand, environmental education actions are needed to contribute to improvement of ecological integrity of the river and its conservation.
Resumo:
Background, aim, and scope Contaminated sediments are a worldwide problem, and mobilization of contaminants is one of the most critical issues in environmental risk assessment insofar as dredging projects are concerned. The investigation of how toxic compounds are mobilized during dredging operations in the channel of the Port of Santos, Brazil, was conducted in an attempt to assess changes in the bioavailability and toxicity of these contaminants.Materials and methods Bulk sediment samples and their interstitial waters and elutriates were subjected to chemical evaluation and ecotoxicological assessment. Samples were collected from the channel before dredging, from the dredge's hopper, and from the disposal site and its surroundings.Results The results indicate that the bulk sediments from the dredging site are contaminated moderately with As, Pb, and Zn and severely with Hg, and that polycyclic aromatic hydrocarbon (PAH) concentrations are relatively high. Our results also show a 50% increase in PAH concentrations in suspended solids in the water collected from the hopper dredge. This finding is of great concern, since it refers to the dredge overflow water which is pumped back into the ecosystem. Acute toxicity tests on bulk sediment using the amphipod Tiburonella viscana showed no toxicity, while chronic tests with the sea urchin Lytechinus variegatus showed toxicity in the interstitial waters and elutriates. Results are compared with widely used sediment quality guidelines and with a sediment quality assessment scheme based on various lines of evidence.Conclusions The data presented here indicate that the sediments collected in this port show a certain degree of contamination, especially those from the inner part of the channel. The classification established in this study indicated that sediments from the dredged channel are impacted detrimentally and that sea disposal may disperse contaminants. According to this classification, the sediments are inappropriate for disposal at sea. It should be emphasized that the poor quality of fine sediments discharged from the hopper dredge in the overflow process can recontaminate the environment.Recommendations and perspectives These findings will help to underpin improved planning of management strategies for dredging operations and sediment disposal in Brazil and other countries.
Resumo:
O sedimento representa um importante depósito de contaminantes e uma fonte de contaminação para a cadeia alimentar aquática. Testes de toxicidade usando anfípodos como organismos-teste são empregados para avaliar sedimentos marinhos e estuarinos, juntamente com análises químicas. O presente trabalho tem como objetivo avaliar a qualidade de sedimentos de seis estações situadas no Sistema Estuarino e Portuário de Santos e São Vicente (São Paulo-Brasil), usando testes de toxicidade aguda com sedimento com anfípodos (Tiburonella viscana) e análises químicas de metais, PCB, e PAH. Outros parâmetros do sedimento foram analisados, como carbono orgânico e granulometria. Foram observados níveis de contaminação mais altos na porção interna do estuário onde se localiza o Porto de Santos e a zona industrial. Os testes de toxicidade mostraram resultados adversos significantes para a maioria das amostras testadas, e os sedimentos da porção interna do estuário apresentaram toxicidade mais alta. As análises de componentes principais indicaram uma relação forte entre contaminação do sedimento e toxicidade. As correlações positivas destes fatores nas amostras estudadas foram usadas para estabelecer os pesos das concentrações químicas que estão associadas com os efeitos adversos. Tais análises permitiram estimar valores limiares de efeito para a contaminação de sedimento através de análises multivariadas, identificando os contaminantes associados com o efeito biológico. Estes valores sugeridos são: Cu, 69.0; Pb, 17.4; Zn, 73.3(mg.kg-1); PAHs, 0.5 (mg.kg-1) e PCBs, 0.1 (µg.kg-1).
Resumo:
The industrial effluents are one of the main sources of water pollution. For an appropriate characterization and control of their discharges, the most efficient strategy is the integrated use of chemical, physical and ecotoxicological analyses. The aims of this study were to asses the efficiency of the treatment plant of a textile industry performing acute toxicity tests and physical-chemical analyses of the effluents before and after the treatment, besides evaluate the toxicity of the effluents of the Treatment System of Liquids Effluents (Sistema de Tratamento de Efluentes Líquidos - SITEL) of Distrito Industrial de Natal (DIN) and some of their physical-chemical variables. The species used in the ecotoxicological tests was the fish Danio rerio. The results showed that the treatment plant reduced significantly (around 50%) the toxicity of the raw textile effluent in only three of the seven tests but, in general, it promoted the reduction of the physical-chemical parameters analyzed. The toxicity and the physical-chemical factors of the effluents of SITEL of DIN varied among the tests and show the importance of monitoring their discharges in the Potengi river, one of the most important rivers of the Rio Grande do Norte state
Resumo:
The objectives of this research were to investigate the agrotoxic most used in the Gramorezinho region in the green belt of Natal, and to evaluate the acute toxicity of these, based on the LC50-48h values estimated in tests for Danio rerio, internationally used as test organism. The acute toxicity tests were performed under laboratory conditions, according to standardized methods (ABNT/NBR/15088/04) for this species. The LC50-48h estimated to Tamaron BR was 352.89 mg.L-1, which characterizes that as practically non-toxic, according to toxicological classes cited by Zucker. For Decis 25EC, the LC50-48h estimated was 0.0004156 mg.L-1 (4.156 X 10-4 mg.L-1), which classifies it as highly toxic to this species