989 resultados para Topographic map complex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Map units directly related to properties of soil-landscape are generated by local soil classes. Therefore to take into consideration the knowledge of farmers is essential to automate the procedure. The aim of this study was to map local soil classes by computer-assisted cartography (CAC), using several combinations of topographic properties produced by GIS (digital elevation model, aspect, slope, and profile curvature). A decision tree was used to find the number of topographic properties required for digital cartography of the local soil classes. The maps produced were evaluated based on the attributes of map quality defined as precision and accuracy of the CAC-based maps. The evaluation was carried out in Central Mexico using three maps of local soil classes with contrasting landscape and climatic conditions (desert, temperate, and tropical). In the three areas the precision (56 %) of the CAC maps based on elevation as topographical feature was higher than when based on slope, aspect and profile curvature. The accuracy of the maps (boundary locations) was however low (33 %), in other words, further research is required to improve this indicator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. METHODS: IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. RESULTS: 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). CONCLUSIONS: MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris) cultivars with a high degree of resistance to Xanthomonas axonopodis pv. phaseoli (Xap) are not available in Brazil. Despite many studies, a low degree of resistance to Xap continues to exist due to its complex genetic inheritance, which is not well known. The objectives of this research were to complement a common bean genetic map based on the cross between a susceptible genotype 'HAB-52' and a resistant genotype 'BAC-6', and to map and analyze genomic regions (quantitative trait loci – QTLs) related to Xap resistance. Eleven linkage groups were determined using 143 RAPD markers, covering 1,234.5 cM of the genome. This map was used to detect QTLs associated with Xap resistance on leaves and pods. The averages of disease severity on leaves (represented by the transformed disease index – TDI) and pods (represented by the diameter of lesion on pods – DLP) were added to the data of the linkage map. Five TDI QTLs and only one LDP QTL were detected. The TDI QTLs were placed in the A, B, G and J linkage groups, with phenotypic variations ranging from 12.7 to 71.6%. The DLP QTL explained 12.9% of the phenotypic variation and was mapped in a distinct linkage group. These results indicate that there are different genes involved in the control of resistance on leaves and pods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent study from our laboratory has provided evidence for the generation of slow potentials occurring in anticipation to task-performance feedback stimuli, in multiple association cortical areas, consistently including two prefrontal areas. In the present study, we intended to determine whether these slow potentials would indicate some abnormality (topographic) in schizophrenic patients, and thus serve as an indication of abnormal association cortex activity. We recorded slow potentials while subjects performed a paired-associates memory task. A 123-channel EEG montage and common average reference were used for 20 unmedicated schizophrenic (mean duration of illness: 11.3 ± 9.2 years; mean number of previous hospitalizations: 1.2 ± 1.9) and 22 healthy control subjects during a visual paired-associates matching task. For the topographic analysis, we used a simple index of individual topographic deviation from normality, corrected for absolute potential intensities. Slow potentials were observed in all subjects. Control subjects showed a simple spatial pattern of voltage extrema (left central positive and right prefrontal negative), whereas schizophrenic patients presented a more complex, fragmented pattern. Topographic deviation was significantly different between groups (P < 0.001). The increased topographic complexity in schizophrenics could be visualized in grand averages computed across subjects. Increased topographic complexity could also be seen when grand averages were computed for subgroups of patients assembled either according to task-performance (high versus low) or by their scores on psychopathological scales. There was no significant correlation between topographic deviation and psychopathology scores. We conclude that the slow potential topographic abnormalities of schizophrenia indicate an abnormality in the configuration of large-scale electrical activity in association cortices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase 1 Map of the Master Plan showing the Tower and Thistle Complex, along with some additional buildings and the main parking lot. Note the location of the Central Utilities Building to the east differs from it's actual location along the escarpment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10-34, OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10-28, OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. © 2013 Manku et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Victoria Island lies at the north-western extremity of the region covered by the vast North American Laurentide Ice Sheet (LIS) in the Canadian Arctic Archipelago. This area is significant because it linked the interior of the LIS to the Arctic Ocean, probably via a number of ice streams. Victoria Island, however, exhibits a remarkably complex glacial landscape, with several successive generations of ice flow indicators superimposed on top of each other and often at abrupt (90 degrees) angles. This complexity represents a major challenge to those attempting to produce a detailed reconstruction of the glacial history of the region. This paper presents a map of the glacial geomorphology of Victoria Island. The map is based on analysis of Landsat Enhanced Thematic Plus (ETM+) satellite imagery and contains over 58,000 individual glacial features which include: glacial lineations, moraines (terminal, lateral, subglacial shear margin), hummocky moraine, ribbed moraine, eskers, glaciofluvial deposits, large meltwater channels, and raised shorelines. The glacial features reveal marked changes in ice flow direction and vigour over time. Moreover, the glacial geomorphology indicates a non-steady withdrawal of ice during deglaciation, with rapidly flowing ice streams focussed into the inter-island troughs and several successively younger flow patterns superimposed on older ones. It is hoped that detailed analysis of this map will lead to an improved reconstruction of the glacial history of this area which will provide other important insights, for example, with respect to the interactions between ice streaming, deglaciation and Arctic Ocean meltwater events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.