851 resultados para Topic discovery
Resumo:
This research is a step forward in discovering knowledge from databases of complex structure like tree or graph. Several data mining algorithms are developed based on a novel representation called Balanced Optimal Search for extracting implicit, unknown and potentially useful information like patterns, similarities and various relationships from tree data, which are also proved to be advantageous in analysing big data. This thesis focuses on analysing unordered tree data, which is robust to data inconsistency, irregularity and swift information changes, hence, in the era of big data it becomes a popular and widely used data model.
Resumo:
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in “omics” sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the “omics” science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia
Resumo:
A recent controversy in the United States over drug pricing by Turing Pharmaceuticals AG has raised larger issues in respect of intellectual property, access to medicines, and the Trans-Pacific Partnership (TPP). In August 2015, Turing Pharmaceuticals AG – a private biopharmaceutical company with offices in New York, the United States, and Zug, Switzerland - acquired the exclusive marketing rights to Daraprim in the United States from Impax Laboratories Incorporated. Martin Shkreli, Turing’s Founder and Chief Executive Officer, maintained: “The acquisition of Daraprim and our toxoplasmosis research program are significant steps along Turing’s path of bringing novel medications to patients with serious disorders, some of whom often go undiagnosed and untreated.” He emphasised: “We intend to invest in the development of new drug candidates that we hope will yield an even better clinical profile, and also plan to launch an educational effort to help raise awareness and improve diagnosis for patients with toxoplasmosis.” In September 2015, there was much public controversy over the decision of Martin Shkreli to raise the price of a 62 year old drug, Daraprim, from $US13.50 to $US750 a pill. The drug is particularly useful in respect to the treatment and prevention of malaria, and in the treatment of infections in individuals with HIV/AIDS. Daraprim is listed on the World Health Organization’s (WHO) List of Essential Medicines. In the face of much criticism, Martin Shkreli has said that he will reduce the price of Daraprim. He observed: “We've agreed to lower the price on Daraprim to a point that is more affordable and is able to allow the company to make a profit, but a very small profit.” He maintained: “We think these changes will be welcomed.” However, he has been vague and ambiguous about the nature of the commitment. Notably, the lobby group, Pharmaceutical Research and Manufacturers of America (PhARMA), disassociated itself from the claims of Turing Pharmaceuticals. The group said: “PhRMA members have a long history of drug discovery and innovation that has led to increased longevity and improved lives for millions of patients.” The group noted: “Turing Pharmaceutical is not a member of PhRMA and we do not embrace either their recent actions or the conduct of their CEO.” The biotechnology peak body Biotechnology Industry Organization also sought to distance itself from Turing Pharmaceuticals. A hot topic: United States political debate about access to affordable medicines This controversy over Daraprim is unusual – given the age of drug concerned. Daraprim is not subject to patent protection. Nonetheless, there remains a monopoly in respect of the marketplace. Drug pricing is not an isolated problem. There have been many concerns about drug pricing – particularly in respect of essential medicines for HIV/AIDS, tuberculosis, and malaria. This recent controversy is part of a larger debate about access to affordable medicines. The dispute raises larger issues about healthcare, consumer rights, competition policy, and trade. The Daraprim controversy has provided impetus for law reform in the US. US Presidential Candidate Hillary Clinton commented: “Price gouging like this in this specialty drug market is outrageous.” In response to her comments, the Nasdaq Biotechnology Index fell sharply. Hillary Clinton has announced a prescription drug reform plan to protect consumers and promote innovation – while putting an end to profiteering. On her campaign site, she has emphasised that “affordable healthcare is a basic human right.” Her rival progressive candidate, Bernie Sanders, was also concerned about the price hike. He wrote a letter to Martin Shkreli, complaining about the price increase for the drug Daraprim. Sanders said: “The enormous, overnight price increase for Daraprim is just the latest in a long list of skyrocketing price increases for certain critical medications.” He has pushed for reforms to intellectual property to make medicines affordable. The TPP and intellectual property The Daraprim controversy and political debate raises further issues about the design of the TPP. The dispute highlights the dangers of extending the rights of pharmaceutical drug companies under intellectual property, investor-state dispute settlement, and drug administration. Recently, the civil society group Knowledge Ecology International published a leaked draft of the Intellectual Property Chapter of the TPP. Knowledge Ecology International Director, James Love, was concerned the text revealed that the US “continues to be the most aggressive supporter of expanded intellectual property rights for drug companies.” He was concerned that “the proposals contained in the TPP will harm consumers and in some cases block innovation.” James Love feared: “In countless ways, the Obama Administration has sought to expand and extend drug monopolies and raise drug prices.” He maintained: “The astonishing collection of proposals pandering to big drug companies make more difficult the task of ensuring access to drugs for the treatment of cancer and other diseases and conditions.” Love called for a different approach to intellectual property and trade: “Rather than focusing on more intellectual property rights for drug companies, and a death-inducing spiral of higher prices and access barriers, the trade agreement could seek new norms to expand the funding of medical research and development (R&D) as a public good, an area where the US has an admirable track record, such as the public funding of research at the National Institutes of Health (NIH) and other federal agencies.” In addition, there has been much concern about the Investment Chapter of the TPP. The investor-state dispute settlement regime would enable foreign investors to challenge government policy making, which affected their investments. In the context of healthcare, there is a worry that pharmaceutical drug companies will deploy their investor rights to challenge public health measures – such as, for instance, initiatives to curb drug pricing and profiteering. Such concerns are not merely theoretical. Eli Lilly has brought an investor action against the Canadian Government over the rejection of its drug patents under the investor-state dispute settlement regime of the North American Free Trade Agreement (NAFTA). The Health Annex to the TPP also raises worries that pharmaceutical drug companies will able to object to regulatory procedures in respect of healthcare. It is disappointing that the TPP – in the leaks that we have seen – has only limited recognition of the importance of access to essential medicines. There is a need to ensure that there are proper safeguards to provide access to essential medicines – particularly in respect of HIV/AIDs, malaria, and tuberculosis. Moreover, there must be protection against drug profiteering and price gouging in any trade agreement. There should be strong measures against the abuse of intellectual property rights. The dispute over Turing Pharmaceuticals AG and Daraprim is an important cautionary warning in respect of some of the dangers present in the secret negotiations in respect of the TPP. There is a need to preserve consumer rights, competition policy, and public health in trade negotiations over an agreement covering the Pacific Rim.
Resumo:
Pangasianodon hypophthalmus is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The current study using Ion Torrent technology generated EST resources from the kidney for Tra catfish reared at a salinity level of 9 ppt. We obtained 2,623,929 reads after trimming and processing with an average length of 104 bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 29,940 contigs, and allowing identification of 5,710 putative genes when comppared with NCBI non-redundant database. A large number of single nucleotide polymorphisms (SNPs) were also detected. The sequence collection generated in our study represents the most comprehensive transcriptomic resource for P. hypophthalmus available to date.
Resumo:
Topic detection and tracking (TDT) is an area of information retrieval research the focus of which revolves around news events. The problems TDT deals with relate to segmenting news text into cohesive stories, detecting something new, previously unreported, tracking the development of a previously reported event, and grouping together news that discuss the same event. The performance of the traditional information retrieval techniques based on full-text similarity has remained inadequate for online production systems. It has been difficult to make the distinction between same and similar events. In this work, we explore ways of representing and comparing news documents in order to detect new events and track their development. First, however, we put forward a conceptual analysis of the notions of topic and event. The purpose is to clarify the terminology and align it with the process of news-making and the tradition of story-telling. Second, we present a framework for document similarity that is based on semantic classes, i.e., groups of words with similar meaning. We adopt people, organizations, and locations as semantic classes in addition to general terms. As each semantic class can be assigned its own similarity measure, document similarity can make use of ontologies, e.g., geographical taxonomies. The documents are compared class-wise, and the outcome is a weighted combination of class-wise similarities. Third, we incorporate temporal information into document similarity. We formalize the natural language temporal expressions occurring in the text, and use them to anchor the rest of the terms onto the time-line. Upon comparing documents for event-based similarity, we look not only at matching terms, but also how near their anchors are on the time-line. Fourth, we experiment with an adaptive variant of the semantic class similarity system. The news reflect changes in the real world, and in order to keep up, the system has to change its behavior based on the contents of the news stream. We put forward two strategies for rebuilding the topic representations and report experiment results. We run experiments with three annotated TDT corpora. The use of semantic classes increased the effectiveness of topic tracking by 10-30\% depending on the experimental setup. The gain in spotting new events remained lower, around 3-4\%. The anchoring the text to a time-line based on the temporal expressions gave a further 10\% increase the effectiveness of topic tracking. The gains in detecting new events, again, remained smaller. The adaptive systems did not improve the tracking results.
Resumo:
Historically, two-dimensional (2D) cell culture has been the preferred method of producing disease models in vitro. Recently, there has been a move away from 2D culture in favor of generating three-dimensional (3D) multicellular structures, which are thought to be more representative of the in vivo environment. This transition has brought with it an influx of technologies capable of producing these structures in various ways. However, it is becoming evident that many of these technologies do not perform well in automated in vitro drug discovery units. We believe that this is a result of their incompatibility with high-throughput screening (HTS). In this study, we review a number of technologies, which are currently available for producing in vitro 3D disease models. We assess their amenability with high-content screening and HTS and highlight our own work in attempting to address many of the practical problems that are hampering the successful deployment of 3D cell systems in mainstream research.
Resumo:
Access to quality professional learning and the opportunity to collaborate with other educators can be limited for teachers in rural and remote areas of Western Australia. A recognised need to enhance the skills of rural teaching professionals and encourage teachers in small communities to join collegial networks was established by the members of several professional organisations. A working group consisting of representatives from the Australian College of Educators-WA (ACE-WA), the Rural and Remote Education Advisory Council (RREAC), the Society for the Provision of Education in Rural Australia (SPERA) and the School of Isolated and Distance Education (SIDE) provided teachers in rural areas with the opportunity to reduce professional isolation through the provision of relevant, convenient, and cost effective in-service education. Through a videoconferencing system, accessed within the Western Australian Telecentre Network and other educational organisations, the audience connected and participated with the presenter and studio based audience for two Hot Topics Seminars in 2008. This paper reports on the challenges and successes encountered by the working group and the findings of the research conducted throughout 2008.
Resumo:
The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.
Resumo:
In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.
Resumo:
Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.