206 resultados para Tonus vagal
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed at quantifies the pain in dogs under dissociative anesthesia, across thermal and pressoric stimulus and quantify the reasonable period between two different opioids analgesics. In this study, 30 dogs were used and, divided into three groups of 10 animals each, in which the animals of GI received methotrimeprazine and midazolam put on the same syringe with ketamine. The animals of GII received the same treatment of GI but associated with butorphanol and finally the animals of GIII received the same treatment of GI but associated with buprenorphine. The routine parametric evaluations has been proceeded, although using the thermo algimetry measured in degrees C with the average of 52 degrees C and the pressoric algimetry in Kg. In the thermo algimetry, there has been significant difference in GI at the moments M0, M1, M4 and M5; in GII it was found at M0, M1, M5 and M6 and in GIII it was observed the significant at M0 and M1. It has also been shown in pressoric algimetry significant difference in GI at the moments M0, M2 and M3. Among GII it has observed significant difference at all moments and it has found at M0, M9 in GIII. Thus, it has observed significant differences between all groups; for such the M2 of GII smaller than the others; and M4, M5 of GIII bigger than GI and GII. In the assessment of all periods it was observed significant latent period bigger in GI, however, with reasonable period and short recovery in GII and GIII. In the order hand, the postural tonus recovery it was longer in GIII, followed by GII and finally GI. The used method for the measurement of algic stimulus was efficient, noticing a reasonable analgesic period of 3 hours for butorphanol and 6 hours for buprenorphine.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
tabula tabular tachyauxesis tachyblastic tachygen tachygenesis tachytelic tactic tactile tactoreceptors taenia taeniate taenidium taenioglossate tagma tagmata tagmosis tail tailfan Takakura's talon talus tandem tangent tangoreceptor tanylobous tapetal tapetum tapinoma-odor Tardigrada tardigrades tarsal tarsation tarsite tarsomere tarsungulus tarsus taste tautonomy tautonym taxa taxes taxis taxis taxodont taxometrics taxon taxonomic taxonomist taxonomy tectiform tectostracum tectum teeth teges tegillum tegmen tegmentum tegula tegular tegulum tegumen tegument tegumentary tela telaform telamon telegonic teleiochrysalis telenchium teleoconch teleodont teleology teleotrocha telepod telescope telescopic teletrophic telioderma teliophan telmophage telocentric telodendria telofemur telogonic telolecithal telomitic telophase telophragma telopod telopodite telorhabdions telosonic telostome telosynapsis telosyndesis telotarsus telotaxis telotroch telson template temporal tenacipeds tenaculum tenent teneral tensor tentacle tentacular tentaculocyst tentaculozooid tentilla tentorial tentorium tenuous teratocyte teratogen teratogenesis teratogyne teratology terebella terebra terebrant terebrate teres terete terga tergal tergite tergolateral tergopleural tergopore tergum tergum termen terminal terminalia termitarium termitophile terranes terrestrial terricolous territory tertiary tertibrach tertibrachial tessellate test testaceology testaceous test-cross testes testis testisac testudinate tetanus tetany tetractinal tetractine tetrad tetradelphic tetramerous tetramorphic tetraploid tetrapod tetrapterous tetrasomic tetrathyridial tetrathyridium tetraxon tetraxonid thalassophilous thallus thamnophilous thanatocoenosis thanatosis theca thecae thecal thecate thelycum thelygenesis thelygenous thelyotokous thelyotoky theory thermocline thermophile thermophobe thermoreceptor thermotaxis thickness thigmotactic thigmotaxis thigmotropism third-form thoraces thoracic thoracomere thoracopod(ite) thorax thoraxes thread thylacium thylacogen thyridial thyridium thyroid thysanuriform tibia tibial tibiotarsal tibiotarsus Tiedemann's tiled timbal tinctorial tine tissue tissue titilla titillae titillator tocopherol tocospermal tocospermia tocostome tokostome tomentose tomentum Tomosvary tone tonic tonofibrillae tonus topochemical topogamodeme topomorph topomorphic toponym topotype tori torma tormogen tornote tornus torose torpid torqueate torsion tortuose torulose torus totipotent totomount toxa toxicognath toxicology toxin toxinosis toxoglossate toxoid trabecula trabeculate trabeculated trachea tracheae tracheal tracheate tracheoblast tracheolar tracheoles trachychromatic tract Tragardh's tragus transad transcoxa transcurrent transect transection transformation transient transitional translocation translucent transmission transposed transscutal transstadial transtilla transverse trapeziform trapezium trapezoid trema tremata Trematoda trenchant trepan triact triactinal triad triaene triage triangle triangular triangulate triaulic triaxial triaxon tribe tribocytic trichite trichobothrium trichobranchia trichobranchiate trichocerous trichodes trichodeum trichodragmata trichogen trichoid trichomes trichophore trichopore trichosors trichostichal trichotomous trichroism tricolumella tricomes tricostate tricrepid tricuspid tricuspidate tridactyl trident tridentate trifid trifurcate triglycerides trignathan trigonal trigoneutism trilabiate trilateral trilobate trilocular trimorphic trimorphism Trinominal triordinal tripartite tripectinate triplet triploblastic triploid triquetral triquetrous triradiate triradiates tritocerebral tritocerebrum tritocerebrum tritonymph tritosternum triturate triungulin triungulinid trivial trivium trivoltine trixenic troch trochal trochalopodous trochantellus trochanter trochanteral trochantin trochi trochiform trochlea trocholophous trochophore trochosphere trochus troglobiont troglodytic troglophile trogloxene tropeic trophal trophallactic trophallaxis trophamnion trophi trophic trophidium trophobiont trophobiont trophobiosis trophobiotic trophocytes trophodisc trophogeny trophoporic trophorhinium trophosome trophotaxis trophothylax trophozooid trophus tropis tropism tropotaxis trumpet truncate truncation trunk trypsin tryptic tryptophan tryptophane T-tubule tube tube-feet tubercle tubercula tuberculate tuberculose tuberiferous tubicolous tubifacient tubule tubulus tubus tuft Tullgren tumefaction tumescence tumid tumulus tunic tunica tunicary tunicate turbinate turgid turreted turriculate tychoparthenogenesis tylasters tylenchoid tyli tyloid tyloides tylosis tylostyle tylote tylus tymbal tympanal tympanal tympanic tympanum Tyndall type typhlosole typologist typolysis typostasis
Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents
Resumo:
OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times), bradycardic responses (>4 times), and vagal (similar to 38%) and sympathetic effects (similar to 36%) were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.
Resumo:
To evaluate the feasibility, safety, and potential beneficial effects of left cardiac sympathetic denervation (LCSD) in systolic heart failure (HF) patients. In this prospective, randomized pilot study, inclusion criteria were New York Heart Association (NYHA) functional class II or III, left ventricular ejection fraction (LVEF) 40, sinus rhythm, and resting heart rate 65 b.p.m., despite optimal medical therapy (MT). Fifteen patients were randomly assigned either to MT alone or MT plus LCSD. The primary endpoint was safety, measured by mortality in the first month of follow-up and morbidity according to pre-specified criteria. Secondary endpoints were exercise capacity, quality of life, LVEF, muscle sympathetic nerve activity (MSNA), brain natriuretic peptide (BNP) levels and 24 h Holter mean heart rate before and after 6 months. We studied clinical effects in long-term follow-up. Ten patients underwent LCSD. There were no adverse events attributable to surgery. In the LCSD group, LVEF improved from 25 6.6 to 33 5.2 (P 0.03); 6 min walking distance improved from 167 35 to 198 47 m (P 0.02). Minnesota Living with Heart Failure Questionnaire (MLWHFQ) score physical dimension changed from 21 5 to 15 7 (P 0.06). The remaining analysed variables were unchanged. During 848 549 days of follow-up, in the MT group, three patients either died or underwent cardiac transplantation (CT), while in the LCSD group six were alive without CT. LCSD was feasible and seemed to be safe in systolic HF patients. Its beneficial effects warrant the development of a larger randomized trial. Trail registration: NCT01224899.
Resumo:
Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus. This study investigated the effects of cannabinoid (CB1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia. Male Wistar rats were pretreated with rimonabant (10 mg/kg, by gavage) or vehicle; 30 min later they received an injection of either LPS (100 mu g/kg, intraperitoneal) or saline. Food intake, body weight, corticosterone response, CRF and CART mRNA expression, Fos-CRF and Fos-alpha-MSH immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase (TH) immunoreactivity in the brainstem were evaluated. LPS administration decreased food intake and body weight gain and increased plasma corticosterone levels and CRF mRNA expression in the PVN. We also observed an increase in Fos-CRF and Fos-TH double-labeled neurons after LPS injection in vehicle-pretreated rats, with no changes in CART mRNA or Fos-alpha-MSH immunoreactive neurons in the ARC. In saline-treated animals, rimonabant pretreatment decreased food intake and body weight gain but did not modify hormone response or Fos expression in the hypothalamus and brainstem compared with vehicle-pretreated rats. Rimonabant pretreatment potentiated LPS-induced hypophagia, body weight loss and Fos-CRF and Fos-TH expressing neurons. Rimonabant did not modify corticosterone, CRF mRNA or Fos-alpha-MSH responses in rats treated with LPS. These data suggest that the endocannabinoid system, mediated by CB1 receptors, modulates hypothalamic and brainstem circuitry underlying the hypophagic effect during endotoxemia to prevent an exaggerated food intake decrease. This article is part of a Special Issue entitled 'Central Control of Food Intake'. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 +/- 336 to 3695 +/- 463 ms) vs SHR ( 3475 +/- 354 to 4494 +/- 300 ms); bradycardia = NCR (1618 +/- 152 to 1358 +/- 185 ms) vs SHR (1911 +/- 323 to 1852 +/- 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 +/- 486 to 6550 +/- 847 ms) vs SHR (4849 +/- 918 to 4926 +/- 646 ms); mesenteric = NCR (5574 +/- 790 to 5752 +/- 539 ms) vs SHR (5638 +/- 648 to 6777 +/- 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.
Resumo:
De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302: R950-R957, 2012. First published February 8, 2012; doi: 10.1152/ajpregu.00450.2011.-Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 +/- 2 and F60: 118 +/- 2 mmHg) and dark periods (F15: 136 +/- 4 and F60: 136 +/- 5 mmHg) compared with controls (light: 111 +/- 2 and dark: 117 +/- 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.
Resumo:
Background: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. Methods: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the "t" test for unpaired comparisons between groups. The level of statistical significance was 5%. Results: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. Conclusion: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.
Resumo:
We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.
Resumo:
Increasing age is associated with a reduction in overall heart rate variability as well as changes in complexity of physiologic dynamics. The aim of this study was to verify if the alterations in autonomic modulation of heart rate caused by the aging process could be detected by Shannon entropy (SE), conditional entropy (CE) and symbolic analysis (SA). Complexity analysis was carried out in 44 healthy subjects divided into two groups: old (n = 23, 63 +/- A 3 years) and young group (n = 21, 23 +/- A 2). It was analyzed SE, CE [complexity index (CI) and normalized CI (NCI)] and SA (0V, 1V, 2LV and 2ULV patterns) during short heart period series (200 cardiac beats) derived from ECG recordings during 15 min of rest in a supine position. The sequences characterized by three heart periods with no significant variations (0V), and that with two significant unlike variations (2ULV) reflect changes in sympathetic and vagal modulation, respectively. The unpaired t test (or Mann-Whitney rank sum test when appropriate) was used in the statistical analysis. In the aging process, the distributions of patterns (SE) remain similar to young subjects. However, the regularity is significantly different; the patterns are more repetitive in the old group (a decrease of CI and NCI). The amounts of pattern types are different: 0V is increased and 2LV and 2ULV are reduced in the old group. These differences indicate marked change of autonomic regulation. The CE and SA are feasible techniques to detect alteration in autonomic control of heart rate in the old group.
Resumo:
The current research compared resting heart rate variability (VFC) before and after 10 weeks of strength training in groups that used and did not use a vibration platform. Seventeen healthy men were divided into conventional strength training (TF) or strength training using a vibration platform with a frequency of 30 Hz (TF+V30) training groups. One repetition maximum load (1-RM) on half squat exercise and VFC measurements were determined pre- and post-training program. Both groups had improved 1-RM load after the program (15.1% in TF group and 16.4% in TF+V30 group), although this increase was changed in the same extent for the two groups and there was no difference in 1-RM load between groups pre- and post-training program. No significant difference was observed in resting VFC measurements between groups pre and post-training program, however the magnitude of the effect size was moderated (ES = 0.50-0.80) for some variables (R-R interval, standard deviation of all R-R interval - SDNN, RMSSD, log-transformed of low frequency - InLF, and log-transformed of high frequency - InHF) in TF+V30 group. It was concluded that 10 weeks of strength training program with or without the vibration platform provided similar increase in 1-RM load in both groups, and although some evidences in this study indicate that vibration can increase vagal activity analyzed by ES, in neither groups the strength training was able to change VFC significantly.