918 resultados para Tissue engineering scaffolds
Resumo:
This dissertation evaluated the feasibility of using commercially available immortalized cell lines in building a tissue engineered in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Mouse endothelial cell line and rat astrocyte cell lines purchased from American Type Culture Collections (ATCC) were the building blocks of the co-culture model. An astrocyte derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel in vitro biomimetic basement membrane for the endothelial cells to form endothelial tight junctions. Trans-endothelial electrical resistance (TEER) and solute mass transport studies were engaged to quantitatively evaluate the tight junction formation on the in-vitro BBB models. Immuno-fluorescence microscopy and Western Blot analysis were used to qualitatively verify the in vitro expression of occludin, one of the earliest discovered tight junction proteins. Experimental data from a total of 12 experiments conclusively showed that the novel BBB in vitro co-culture model with the astrocyte derived aECM (CO+aECM) was promising in terms of establishing tight junction formation represented by TEER values, transport profiles and tight junction protein expression when compared with traditional co-culture (CO) model setups and endothelial cells cultured alone. Experimental data were also found to be comparable with several existing in vitro BBB models built from various methods. In vitro colorimetric sulforhodamine B (SRB) assay revealed that the co-cultured samples with aECM resulted in less cell loss on the basal sides of the insert membranes than that from traditional co-culture samples. The novel tissue engineering approach using immortalized cell lines with the addition of aECM was proven to be a relevant alternative to the traditional BBB in vitro modeling.
Resumo:
Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.
Resumo:
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin and they are usually accompanied by fibrotic reactions that result in the production of a scar. Natural biopolymers such as collagen have been a lot investigated as potential source of biomaterial for skin replacement in Tissue Engineering. Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role in connective tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches, as skin tissue engineering. In addition, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are skin and bone from bovine and porcine origin. However, these last carry high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy and immunogenic responses. On the other hand, the increase of jellyfish has led us to consider this marine organism as potential collagen source for tissue engineering applications. In the present study, novel form of acid and pepsin soluble collagen were extracted from dried Rhopilema hispidum jellyfish species in an effort to obtain an alternative and safer collagen. We studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using pepsin extraction method (34.16 mg collagen/g of tissue). The isolated collagen was characterized by SDS-polyacrylamide gel electrophoresis and circular dichroism spectroscopy.
Resumo:
Cardiac tissue engineering (CTE) is currently a prime focus of research due to an enormous clinical need. In this work, a novel functional material, Poly(3-hydroxyoctanoate), P(3HO), a medium chain length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Our results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of the P(3HO) neat patches, assessed using Neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated to the patches. Also, no deleterious effect was observed on the adults cardiomyocytes’ contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO) based multifunctional cardiac patches are promising constructs for efficient CTE. This work will provide a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials.
Resumo:
Background. Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. Aim. The purpose of this article is to highlight the significant new knowledges regarding this matter. Emerging acquisitions. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. Future research activities. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.
Resumo:
Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range. ^
Resumo:
Previous studies support resorbable biocomposites made of poly(L-lactic acid) (PLA) and beta-tricalcium phosphate (TCP) produced by supercritical gas foaming as a suitable scaffold for tissue engineering. The present study was undertaken to demonstrate the biocompatibility and osteoconductive properties of such a scaffold in a large animal cancellous bone model. The biocomposite (PLA/TCP) was compared with a currently used beta-TCP bone substitute (ChronOS, Dr. Robert Mathys Foundation), representing a positive control, and empty defects, representing a negative control. Ten defects were created in sheep cancellous bone, three in the distal femur and two in the proximal tibia of each hind limb, with diameters of 5 mm and depths of 15 mm. New bone in-growth (osteoconductivity) and biocompatibility were evaluated using microcomputed tomography and histology at 2, 4 and 12 months after surgery. The in vivo study was validated by the positive control (good bone formation with ChronOS) and the negative control (no healing with the empty defect). A major finding of this study was incorporation of the biocomposite in bone after 12 months. Bone in-growth was observed in the biocomposite scaffold, including its central part. Despite initial fibrous tissue formation observed at 2 and 4 months, but not at 12 months, this initial fibrous tissue does not preclude long-term application of the biocomposite, as demonstrated by its osteointegration after 12 months, as well as the absence of chronic or long-term inflammation at this time point.
Resumo:
This chapter details the design, synthesis and evaluation techniques required to produce healable supramolecular materials. Key developments in supramolecular polymer chemistry that laid down the design concepts necessary to produce responsive materials are summarized. Subsequently, select examples from the literature concerning the synthesis and analysis of healable materials containing hydrogen bonding, π−π stacking and metal–ligand interactions are evaluated. The last section describes the most recent efforts to produce healable gels for niche applications, including electrolytes and tissue engineering scaffolds. The chapter also describes the design criteria and production of nano-composite materials that exhibit dramatically increased strength compared to previous generations of supramolecular materials, whilst still retaining the key healing characteristics.
Resumo:
Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and wound dressings. This review provides an analysis of their main characteristics and biomedical applications. From Wichterle’s pioneering work to the most recent hydrogel-based inventions and products on the market, it provides the reader with a detailed introduction to the topic and perspective on further potential developments.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.
Resumo:
A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.