993 resultados para Tissue Microarray
Resumo:
IL-23 is a heterodimeric cytokine involved in inflammatory diseases; its role in cancer progression is controversial. Here we analyse the expression of IL-23 subunits (p40 and p19) and IL-23R in colorectal cancer with regard to disease progression, clinical-pathological and molecular aspects. Immunohistochemistry for IL-23p19, IL-23p40, IL-23R and CD8 was performed on a multi-punch tissue microarray of 195 colorectal cancers (cohort 1), matched normal tissue, adenoma and lymph node metastases. Results were compared with clinical-pathological features and CD8+ T-cell counts, then validated on two patient cohorts (cohort 2: n=341, cohort 3: n=139). Cytoplasmic/membranous expression of IL-23 (p19 and p40 subunits) and IL-23R, respectively were over-expressed in carcinomas versus adenomas and normal tissues (p<0.0001) but were reduced in lymph node metastases (p<0.0001). Nuclear IL-23p19 expression was observed in 23.1% and was associated with early TNM stage (p=0.0186), absence of venous (p=0.0124) and lymphatic invasion (p=0.01493), favorable survival (p=0.014) and absence of distant metastasis (p=0.0146; specificity: 100%). This unexpected cellular localization was confirmed by cell fractionation. The beneficial effect of nuclear IL-23p19 was restricted to tumours with CD8+ high counts. Results were validated on Cohorts 2/3. This multicenter study underlines the possible CD8(+)--dependency and beneficial effect of nuclear IL-23p19 on overall patient survival.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.
Resumo:
BACKGROUND TMPRSS2-ERG gene fusion is the most frequent genetic alteration in prostate cancer. However, information about its distribution in lymph node positive prostate cancers and the prognostic significance in these advanced tumors is unknown. METHODS Gene fusion status was determined by fluorescence in situ hybridization on a tissue-microarray constructed from 119 hormone-naïve nodal positive, surgically treated prostate cancers containing samples from the primary tumors and corresponding lymph node metastases. Data were correlated with various tumor features (Gleason score, stage, cancer volume, nodal tumor burden) and biochemical recurrence-free, disease-specific, and overall survival. RESULTS TMPRSS2-ERG fusion was detected in 43.5% of the primary tumors. Conversely, only 29.9% of the metastasizing components showed the fusion. Concordance in TMPRSS2-ERG status between primary tumors and metastases was 70.9% (Kappa 0.39); 20.9% and 8.1% of the patients showed the mutation solely in their primary tumors and metastases, respectively. TMPRSS2-ERG fusion was not correlated with specific histopathological tumor features but predicted favorable biochemical recurrence-free, disease-specific and overall survival independently when present in the primary tumor (P < 0.05 each). CONCLUSION TMPRSS2-ERG fusion is more frequent in primary prostate cancer than in corresponding metastases suggesting no selection of fusion-positive cells in the metastatic process. The gene fusion in primary tumors independently predicts favorable outcome.
Resumo:
PURPOSE FGFR3 is considered a good therapeutic target for bladder cancer. However, to our knowledge it is unknown whether the FGFR3 status of primary tumors is a surrogate for related metastases, which must be targeted by FGFR targeted systemic therapies. We assessed FGFR3 protein expression in primary bladder tumors and matched nodal metastases. MATERIALS AND METHODS We examined matched primary tumor and nodal metastases from 150 patients with bladder cancer clinically staged as N0M0. Four samples per patient were incorporated into a tissue microarray and FGFR3 expression was assessed by immunohistochemistry. FGFR3 expression was tested for an association with categorical clinical data using the Fisher exact test, and with overall and recurrence-free survival by Kaplan-Meier analysis. RESULTS Duplicate spots from primary tumors and lymph node metastases were highly concordant (OR 8.6 and 16.7, respectively, each p <0.001). Overall FGFR protein expression levels did not differ between primary and metastatic lesions (p = 0.78). Up-regulated expression was recorded in 53 of 106 evaluable primary tumor spots and 56 matched metastases. Concordance of FGFR3 expression levels in 79 matched primary tumor and metastasis specimens was high (OR 8.45, p <0.001). In 15 and 12 patients expression was up-regulated in only metastasis and in only the primary tumor, respectively. Overall and recurrence-free survival was not related to FGFR3 expression. CONCLUSIONS FGFR3 expression in matched primary and metastasized bladder cancer specimens showed good but not absolute concordance. Thus, in most patients primary tumor FGFR3 status can guide the selection of FGFR targeted therapy.
Resumo:
BACKGROUND Oesophageal adenocarcinoma or Barrett's adenocarcinoma (EAC) is increasing in incidence and stratification of prognosis might improve disease management. Multi-colour fluorescence in situ hybridisation (FISH) investigating ERBB2, MYC, CDKN2A and ZNF217 has recently shown promising results for the diagnosis of dysplasia and cancer using cytological samples. METHODS To identify markers of prognosis we targeted four selected gene loci using multi-colour FISH applied to a tissue microarray containing 130 EAC samples. Prognostic predictors (P1, P2, P3) based on genomic copy numbers of the four loci were statistically assessed to stratify patients according to overall survival in combination with clinical data. RESULTS The best stratification into favourable and unfavourable prognoses was shown by P1, percentage of cells with less than two ZNF217 signals; P2, percentage of cells with fewer ERBB2- than ZNF217 signals; and P3, overall ratio of ERBB2-/ZNF217 signals. Median survival times for P1 were 32 vs 73 months, 28 vs 73 months for P2; and 27 vs 65 months for P3. Regarding each tumour grade P2 subdivided patients into distinct prognostic groups independently within each grade, with different median survival times of at least 35 months. CONCLUSIONS Cell signal number of the ERBB2 and ZNF217 loci showed independence from tumour stage and differentiation grade. The prognostic value of multi-colour FISH-assays is applicable to EAC and is superior to single markers.
Resumo:
Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.
Resumo:
BACKGROUND Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. METHODS Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh-frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. RESULTS miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. CONCLUSIONS We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.
Resumo:
BACKGROUND Tapasin is a crucial component of the major histocompatibility (MHC) class I antigen presentation pathway. Defects in this pathway can lead to tumor immune evasion. The aim of this study was to test whether tapasin expression correlates with CD8(+) cytotoxic T lymphocyte (CTL) infiltration of colorectal cancer (CRC) and overall survival. METHODS A next-generation tissue microarray (ngTMA) of 198 CRC patients with full clinicopathological information was included in this study. TMA slides were immunostained for tapasin, MHC I and CD8. Marker expression was analyzed with immune-cell infiltration, patient survival and TNM-staging. RESULTS A reduction of tapasin expression strongly correlated with venous invasion (AUC 0.682, OR 2.7, p = 0.002; 95% CI 1.7-5.0), lymphatic invasion (AUC 0.620, OR 2.0, p = 0.005; 95 % CI 1.3-3.3), distant metastasis (AUC 0.727, OR 2.9, p = 0.004; 95% CI 1.4-5.9) and an infiltrative tumor border configuration (AUC 0.621, OR 2.2, p = 0.017; 95% CI 1.2-4.4). Further, tapasin expression was associated with CD8(+) CTL infiltration (AUC 0.729, OR 5.4, p < 0.001; 95% CI 2.6-11), and favorable overall survival (p = 0.004, HR 0.6, 95% CI 0.42-0.85). CONCLUSIONS Consistent with published functional data showing that tapasin promotes antigen presentation, as well as tumor immune recognition and destruction by CD8(+) CTLs, a reduction in tapasin expression is associated with tumor progression in CRC.
Resumo:
BACKGROUND The immune contexture predicts prognosis in human colorectal cancer (CRC). Whereas tumour-infiltrating CD8+ T cells and myeloid CD16+ myeloperoxidase (MPO)+ cells are associated with favourable clinical outcome, interleukin (IL)-17-producing cells have been reported to correlate with severe prognosis. However, their phenotypes and functions continue to be debated. OBJECTIVE To investigate clinical relevance, phenotypes and functional features of CRC-infiltrating, IL-17-producing cells. METHODS IL-17 staining was performed by immunohistochemistry on a tissue microarray including 1148 CRCs. Phenotypes of IL-17-producing cells were evaluated by flow cytometry on cell suspensions obtained by enzymatic digestion of clinical specimens. Functions of CRC-isolated, IL-17-producing cells were assessed by in vitro and in vivo experiments. RESULTS IL-17+ infiltrates were not themselves predictive of an unfavourable clinical outcome, but correlated with infiltration by CD8+ T cells and CD16+ MPO+ neutrophils. Ex vivo analysis showed that tumour-infiltrating IL-17+ cells mostly consist of CD4+ T helper 17 (Th17) cells with multifaceted properties. Indeed, owing to IL-17 secretion, CRC-derived Th17 triggered the release of protumorigenic factors by tumour and tumour-associated stroma. However, on the other hand, they favoured recruitment of beneficial neutrophils through IL-8 secretion and, most importantly, they drove highly cytotoxic CCR5+CCR6+CD8+ T cells into tumour tissue, through CCL5 and CCL20 release. Consistent with these findings, the presence of intraepithelial, but not of stromal Th17 cells, positively correlated with improved survival. CONCLUSIONS Our study shows the dual role played by tumour-infiltrating Th17 in CRC, thus advising caution when developing new IL-17/Th17 targeted treatments.
Resumo:
AIM VE1 is a monoclonal antibody detecting mutant BRAFV600E protein by immunohistochemistry. Here we aim to determine the inter-observer agreement and concordance of VE1 with mutational status, investigate heterogeneity in colorectal cancers and metastases and determine the prognostic effect of VE1 in colorectal cancer patients. METHODS Concordance of VE1 with mutational status and inter-observer agreement were tested on a pilot cohort of colorectal cancers (n = 34), melanomas (n = 23) and thyroid cancers (n = 8). Two prognostic cohorts were evaluated (n = 259, Cohort 1 and n = 226, Cohort 2) by multiple-punch tissue microarrays. VE1 staining on preoperative biopsies (n = 118 patients) was compared to expression in resections. Primary tumors and metastases from 13 patients were tested for VE1 heterogeneity using a tissue microarray generated from all available blocks (n = 100 blocks). RESULTS Inter-observer agreement was 100% (kappa = 1.0). Concordance between VE1 and V600E mutation was 98.5%. Cohort 1: VE1 positivity (seen in 13.5%) was associated with older age (p = 0.0175) and MLH1 deficiency (p < 0.0001). Cohort 2: VE1 positivity (seen in 12.8%) was associated with female gender (p = 0.0016), right-sided tumor location (p < 0.0001), higher tumor grade (p < 0.0001) and mismatch repair (MMR)-deficiency (p < 0.0001). In survival analysis, MMR status and postoperative therapy were identified as possible confounding factors. Adjusting for these features, VE1 was an unfavorable prognostic factor. Preoperative biopsy staining matched resections in all cases except one. No heterogeneity was found across any primary/metastatic tumor blocks. CONCLUSION VE1 is highly concordant for V600E and homogeneously expressed suggesting staining can be analysed on resection specimens, preoperative biopsies, metastatic lesions and tissue microarrays.
Resumo:
BACKGROUND With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. METHODS AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. RESULTS AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). CONCLUSIONS Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is highly conserved during tumor progression and a change only occurs in a small fraction (4.1 %). Our study supports the notion that targeting AR could be effective for many BC patients and that re-testing of AR status in formerly negative or mixed type BC's is recommended.
Resumo:
Background: Tumor infiltrating T-lymphocytes (TILs) have been shown to play an important prognostic role in many carcinomas. The identification of prognostic relevant morphological or molecular factors is a major area of interest in the diagnostic process and for the treatment of highly aggressive esophageal adenocarcinoma. Studies about the impact of TILs in this tumor have not shown completely congruent results yet. We present a comprehensive study about the clinical and pathological impact of TIL in esophageal adenocarcinomas. Methods: A next generation tissue microarray (TMA) of 117 primary resected esophageal adenocarcinomas was analyzed for CD3+, CD8+ and FoxP3+ TIL using immunohistochemistry. The TMA contained three cores of the tumor center and the tumor periphery per each case. Slides were scanned with a high-resolution scanner (ScanScope CS; Aperio) and an image analysis software (Aperio Image Scope) was used to determine the TIL counts. The results were correlated with clinicopathological parameters. Results: CD3+, CD8+ and FoxP3+ TIL counts showed a significant correlation among each other (p<0.001 each, range: 0.27-0.77). TIL counts were categorized as high and low levels, according to the median. Tumors with high FoxP3+ intratumoral lymphocyte counts were more frequently of lower pT category (p<0.001) and without lymph node metastasis (p=0.04). High levels of FoxP3+ lymphocytes in the tumor center and the periphery were also associated with better prognosis (p<0.001 and p=0.041, respectively) in univariate analysis. A similar prognostic impact was seen for high levels of CD3+ and CD8+ TIL in the tumor center, but not in the periphery (p=0.047 and p=0.011, respectively). In multivariate analysis high central FoxP3+TIL levels were an independent prognostic factor (HR=0.4; p=0.023) which was similar to a combination score of CD3+/CD8+/FoxP3+ TIL (HR=0.54; p=0.027) or CD8+/Foxp3+ TIL (HR=0.052; p=0.020) and superior to pT- and pN category (p>0.05 each). Conclusion: This study demonstrates a significant beneficial prognostic impact of high TIL counts in the tumor center of esophageal adenocarcinomas, in particular with regards to the subpopulation of FoxP3+ and CD8+ T-regulatory cells. The determination of intratumoral lymphocytic counts and application of TIL scores can improve prognostic accuracy of pathologic reports of these tumors and may be helpful for better risk stratification of esophageal adenocarcinoma patients.
Resumo:
Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^
Resumo:
Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^
Resumo:
Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^