321 resultados para Thiopurine Methyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose/Objective(s): Current standard treatment of glioblastoma is radiotherapy (RT) concomitant with temozolomide (TMZ), an alkylating agent. O6-methylguanine-DNA methyltransferase (MGMT) expression is a major mechanism of resistance to Proceedings of the alkylating agent chemotherapy, and MGMT gene promoter methylation (present in 30-45 % of tumors) has been shown to be predictive for tumor response to TMZ therapy. MGMT, an exhaustible repair protein can be depleted by specific inhibitors such as O6- benzylguanine or the non-toxic O6-(4-bromothenyl)guanine (PaTrin-2). Here we have studied the efficacy of the combination of TMZ, RT, and PaTrin-2 to improve the treatment outcome in glioblastoma expressing MGMT. Materials/Methods: 3 glioblastoma lines were chosen: LN18 and T98G expressing MGMT and U251 lacking MGMT expression. A shRNA approach was used to selectively and permanently knockdown level of MGMT in LN18 line. Cells were treated with 10 mM PaTrin-2. After 2 h, various concentrations of TMZ were added, cells were incubated for 24 h, and clonogenic assays were performed. After the same PaTrin-2 pretreatment and 100 mM TMZ exposure, cells were plated 4 h before irradiation with increasing RT doses of up to 6 Gy. Clonogenic survival was assessed after 14 days. Results: Western blot analysis confirmed that reduction of MGMT expression was achieved in LN18A1 expressing MGMT-targeting shRNA. The shRNA non-targeting control sequence did not influenceMGMTprotein level (LN18NT). PaTrin-2 showed no toxicity at 10 mMon the 5 cell lines. TMZ induced up to 70 and 97%of cell death on LN18A1 and U251, respectively, but was not toxic up to 50 mMfor T98G, LN18, and LN18NT. Up to 53%increased TMZ toxicity was observed on the 5 cell lines when treated with the 2 drugs. Irradiation of the 5 lines treated or not with PaTrin-2 showed no survival difference at any irradiation dose. When LN18A1 and U251 cells were irradiated post TMZ treatment, an up to 2.5 and 139.4 fold increase in toxicity, respectively, was observed compared to un-pretreated controls. By contrast, TMZ pretreatment did not increase irradiation toxicity on T98G, LN18, and LN18NT. When cells were incubated with PaTrin-2 and TMZ before the irradiation, up to 3.7, 3.9, 5.8, 6.6 and 348.5 fold increase in toxicity was observed compared to controls on LN18, LN18NT, LN18A1, T98G and U251, respectively. Conclusions: We present here results of TMZ and PaTrin-2 combination ± RT on glioblastoma lines. U251 and LN18A1 cells were much more sensitive to TMZ than LN18, LN18NT, and T98G. PaTrin-2 enhanced the toxicity of TMZ on the MGMT expressing glioblastoma lines. RT further increased TMZ and PaTrin-2 efficacy. These results are encouraging for the treatment of patients with glioblastoma expressing MGMT who have the worst prognosis and respond poorly to RT combined with TMZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. Experimental Design: Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. Results: In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. Conclusions: In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy. Clin Cancer Res; 17(2); 255-66. (C)2010 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

22q11.2 deletion syndrome (22q11DS) is associated with an increased susceptibility to develop schizophrenia. Despite a large body of literature documenting abnormal brain structure in 22q11DS, cerebral changes associated with brain maturation in 22q11DS remained largely unexplored. To map cortical maturation from childhood to adulthood in 22q11.2 deletion syndrome, we used cerebral MRI from 59 patients with 22q11DS, aged 6 to 40, and 80 typically developing controls; three year follow-up assessments were also available for 32 patients and 31 matched controls. Cross-sectional cortical thickness trajectories during childhood and adolescence were approximated in age bins. Repeated-measures were also conducted with the longitudinal data. Within the group of patients with 22q11DS, exploratory measures of cortical thickness differences related to COMT polymorphism, IQ, and schizophrenia were also conducted. We observed deviant trajectories of cortical thickness changes with age in patients with 22q11DS. In affected preadolescents, larger prefrontal thickness was observed compared to age-matched controls. Afterward, we observed greater cortical loss in 22q11DS with a convergence of cortical thickness values by the end of adolescence. No compelling evidence for an effect of COMT polymorphism on cortical maturation was observed. Within 22q11DS, significant differences in cortical thickness were related to cognitive level in children and adolescents, and to schizophrenia in adults. Deviant trajectories of cortical thickness from childhood to adulthood provide strong in vivo cues for a defect in the programmed synaptic elimination, which in turn may explain the susceptibility of patients with 22q11DS to develop psychosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. EXPERIMENTAL DESIGN: Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. RESULTS: In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. CONCLUSIONS: In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy. Clin Cancer Res; 17(2); 255-66. ©2010 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O⁶-methylguanine-DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O⁶-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG), which repairs the cytotoxic lesions N³-methyladenine and N⁷-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVE: A preliminary study by our group suggested an association between daytime sleepiness and the catechol-O-methyltransferase (COMT) val158met polymorphism (rs4680) in patients with Parkinson disease (PD). We sought to confirm this association in a large group of patients with PD. DESIGN: Genetic association study in patients with PD. SETTING: Movement disorder sections at 2 university hospitals. PARTICIPANTS: PD patients with and without episodes of suddenly falling asleep matched for antiparkinsonian medication, disease duration, sex, and age, who participated in a previous genetic study on dopamine-receptor polymorphisms. INTERVENTIONS: Not applicable. MEASUREMENTS AND RESULTS: In this study, 240 patients with PD (154 men; age 65.1 +/- 6.1 years; disease duration 9.4 +/- 6.0 years) were included. Seventy had the met-met (LL), 116 the met-val (LH), and 54 the val-val (HH) genotype. In the combined LL+LH group (featuring reduced COMT activity), the mean Epworth Sleepiness Scale (ESS) score was 9.0 +/- 5.9 versus 11.0 +/- 6.1 in the HH (high COMT activity) group (P = .047). Forty-seven percent of the LL and LH patients had sudden sleep onset compared with 61% of the HH patients (P = .07). Logistic regression, however, showed that both pathologic ESS scores (i.e., > 10) and sudden sleep onset were predicted by subjective disease severity (P < .001 each) but not by the COMT genotype. CONCLUSIONS: Our previous finding that the L-allele may be associated with daytime sleepiness could not be confirmed in the present study. Altogether, our data do not support a clinically relevant effect of the COMT genotype on daytime sleepiness in PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy. The hypocretin/orexin deficiency is likely to be the key to its pathophysiology in most of cases although the cause of human narcolepsy remains elusive. Acting on a specific genetic background, an autoimmune process targeting hypocretin neurons in response to yet unknown environmental factors is the most probable hypothesis in most cases of human narcolepsy with cataplexy. Although narcolepsy presents one of the tightest associations with a specific human leukocyte antigen (HLA) (DQB1*0602), there is strong evidence that non-HLA genes also confer susceptibility. In addition to a point mutation in the prepro-hypocretin gene discovered in an atypical case, a few polymorphisms in monoaminergic and immune-related genes have been reported associated with narcolepsy. The treatment of narcolepsy has evolved significantly over the last few years. Available treatments include stimulants for hypersomnia with the quite recent widespread use of modafinil, antidepressants for cataplexy, and gamma-hydroxybutyrate for both symptoms. Recent pilot open trials with intravenous immunoglobulins appear an effective treatment of cataplexy if applied at early stages of narcolepsy. Finally, the discovery of hypocretin deficiency might open up new treatment perspectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The development of novel therapies and the increasing number of trials testing management strategies for luminal Crohn's disease (CD) have not filled all the gaps in our knowledge. Thus, in clinical practice, many decisions for CD patients need to be taken without high quality evidence. For this reason, a multidisciplinary European expert panel followed the RAND method to develop explicit criteria for the management of individual patients with active, steroid-dependent (ST-D) and steroid-refractory (ST-R) CD. Methods: Twelve international experts convened in Geneva, Switzerland in December 2007, to rate explicit clinical scenarios, corresponding to real daily practice, on a 9-point scale according to the literature evidence and their own expertise. Median ratings were stratified into three categories: appropriate (7-9), uncertain (4-6) and inappropriate (1-3). Results: Overall, panelists rated 296 indications pertaining to mild-to-moderate, severe, ST-D, and ST-R CD. In anti-TNF naïve patients, budesonide and prednisone were found appropriate for mildmoderate CD, and infliximab (IFX) when those had previously failed or had not been tolerated. In patients with prior success with IFX, this drug with or without co-administration of a thiopurine analog was favored. Other anti-TNFs were appropriate in case of intolerance or resistance to IFX. High doses steroids, IFX or adalimumab were appropriate in severe active CD. Among 105 indications for ST-D or ST-R disease, the panel considered appropriate the thiopurine analogs, methotrexate, IFX, adalimumab and surgery for limited resection, depending on the outcome of prior therapies. Anti-TNFs were generally considered appropriate in ST-R. Conclusion: Steroids, including budesonide for mild-to-moderate CD, remain first-line therapies in active luminal CD. Anti-TNFs, in particular IFX with respect to the amount of available evidence, remain second-line for most indications. Thiopurine analogs are preferred to anti-TNFs when steroids are not appropriate, except when anti-TNFs were previously successful. These recommendations are available online (www.epact.ch). A prospective evaluation of these criteria in a large database in Switzerland in underway to validate these criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological subtyping and grading by malignancy are the cornerstones of the World Health Organization (WHO) classification of tumors of the central nervous system. They shall provide clinicians with guidance as to the course of disease to be expected and the choices of treatment to be made. Nonetheless, patients with histologically identical tumors may have very different outcomes, notably in patients with astrocytic and oligodendroglial gliomas of WHO grades II and III. In gliomas of adulthood, 3 molecular markers have undergone extensive studies in recent years: 1p/19q chromosomal codeletion, O(6)-methylguanine methyltransferase (MGMT) promoter methylation, and mutations of isocitrate dehydrogenase (IDH) 1 and 2. However, the assessment of these molecular markers has so far not been implemented in clinical routine because of the lack of therapeutic implications. In fact, these markers were considered to be prognostic irrespective of whether patients were receiving radiotherapy (RT), chemotherapy, or both (1p/19q, IDH1/2), or of limited value because testing is too complex and no chemotherapy alternative to temozolomide was available (MGMT). In 2012, this situation has changed: long-term follow-up of the Radiation Therapy Oncology Group 9402 and European Organisation for Research and Treatment of Cancer 26951 trials demonstrated an overall survival benefit from the addition to RT of chemotherapy with procarbazine/CCNU/vincristine confined to patients with anaplastic oligodendroglial tumors with (vs without) 1p/19q codeletion. Furthermore, in elderly glioblastoma patients, the NOA-08 and the Nordic trial of RT alone versus temozolomide alone demonstrated a profound impact of MGMT promoter methylation on outcome by therapy and thus established MGMT as a predictive biomarker in this patient population. These recent results call for the routine implementation of 1p/19q and MGMT testing at least in subpopulations of malignant glioma patients and represent an encouraging step toward the development of personalized therapeutic approaches in neuro-oncology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.