861 resultados para Thick coating
Resumo:
Orthogonal designs are used to investigate the main factors when doing experiments in which pulse bias is superimposed on d.c. bias during cathodic are deposition of TiN. Pulse peak, duty cycle, frequency, direct voltage, are current and pressure all are investigated when coating TiN on HSS substrates. Roughness, surface micrograph, microhardness and thickness are tested. By analysis of variance, it is shown that pressure and frequency are the main factors. R-a and droplet density of the film with (d.c. + pulse) bias decrease. A simple explanation for the result is suggested.
Resumo:
发展了一种新的分析涂层结构(平板、梁)热残余应力的模型,可以研究骤冷过程(Quenching)和冷却过程(Cooling)在涂层结构内引发的残余应力分布。与以往模型相比,其优势在于:它可以考虑源于喷涂过程的涂层孔隙率、温度梯度等因素对于涂层和基底内残余应力的影响。其中孔隙率和温度分布由计算机模拟涂层沉积过程得到。另外,当基底的材料和几何参数被固定时,我们分析了诸如涂层的理想模量、厚度、热膨胀系数等参数,对于涂层结构中最终残余应力分布的改变机理。
Resumo:
The magnetic moment of square planar melt processed YBa2Cu3O7-δ thick films is observed to scale with the cube of the sample width at 4.2 K, suggesting that current flow on the length scale of the film determines its magnetization at this temperature. A well-defined discontinuity in slope in the scaling data at a sample width corresponding to the average grain size (≈2 mm) implies the coexistence of distinct intra- and inter-grain critical current densities of 1.1 × 105Acm-2 and 0.4 × 105Acm-2 at 1 T and 4.2 K. The presence of a critical state in the films at 4.2T is confirmed by removing the central section from a specimen. The observed change in magnetic moment is in excellent agreement with theory for fields greater than ≈2 T. A critical state is not observed at 77 K which suggests that the grains are only weakly coupled at the higher temperature. © 1994.
Resumo:
The magnetic properties of melt-processed YBa2Cu3O7-δ thick films have been measured and correlated with features in the microstructure at 4.2 and 77 K for film thicknesses between 50 and 140 μm. A qualitative model for the volume magnetization of the films at 4.2 K is proposed in terms of the individual contributions from intra H-S grain, inter H-S grain and granular Jc components.
Resumo:
Transport critical current measurements have been carried out on melt-processed thick films of YBa2Cu3O7-δ on yttria-stabilized zirconia in fields of up to 8 T both within grains and across grain boundaries. These measurements yield Jc values of ∼3000 A cm-2 at 4.2 K and zero magnetic field and 400 A cm -2 at 77 K and zero magnetic field, taking the entire sample width as the definitive dimension. Optical and scanning electron microscopy reveals that the thick-film grains consist typically of a central "hub" region ∼50 μm in diameter, which is well connected to radial subgrains or "spokes" which extend ∼1 mm to define the complete grain structure. Attempts have been made to correlate the transport measurements of inter- and intra-hub-and-spoke (H-S) critical current with values of this parameter derived previously from magnetization measurements. Analysis of the transport measurements indicates that current flow through H-S grains is constrained to paths along the spokes via the grain hub. Taking the size of the hub as the definitive dimension yields an intra-H-S grain Jc of ∼60 000 A cm-2 at 4.2 K and 0 T, which is in reasonable agreement with the magnetization data. Experiments in which the hub is removed from individual grains confirm that this feature determines critically the J c of the film.
Resumo:
Using single-walled nanotubes as an example, we fabricated transparent conductive coatings and demonstrated a new technique of centrifuge coating as a potential low-waste, solution-based batch process for the fabrication of nanostructured coatings. A theoretical model is developed to account for the sheet resistance exhibited by layered random-network coatings such as nanofilaments and graphene. The model equation is analytical and compact, and allows the correlation of very different scaling regimes reported in the literature to the underlying coating microstructure. Finally, we also show a refined experimental setup to systematically measure the curvature-dependent sheet resistance.
Resumo:
The mechanism of the formation of periodic segmentation cracks of a coating plated on a substrate with periodic subsurface inclusions (PSI) is investigated. The internal stress in coating and subsequently the strain energy release rate (SERR) of the segmentation cracks are computed with finite element method (FEM). And the effect of the geometrical parameters of the PSI is studied. The results indicate that the ratio of the width of the inclusion to the period of the repeated structure has an optimum value, at which the maximum internal tensile stress and SERR arise. On the other hand, the ratio of the max-thickness of the inclusion to the thickness of the coating has a threshold value, above which the further increase of this ratio should seldom influence the internal stress or the SERR.
Resumo:
The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.
Resumo:
An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.
Resumo:
The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.
Resumo:
The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.
Resumo:
The internal stresses in a duplex coating involving a prequenched layer are believed to change if it is exposed to thermal loading. To characterise the internal stresses in such a duplex coating, a gradient model of finite element method is set up. The initial stress within the substrate developed in as quenching and the internal stresses due to the tempering of the prequenched layer ( TPQL) in such a duplex coating are calculated. The synthetical internal stresses in coating can be estimated by superposing uniform initial stresses developed during plating. The results indicate that the residual tensile stresses due to fabrication in coating will be decreased greatly, or even synthetical compressive internal stresses may arise in the coating.
Resumo:
A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.