844 resultados para Thermogravimetric Analysis (TGA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate, Pb(Zr0.3Ti0.7)O-3 (PZT) thin films were prepared with success by the polymeric precursor method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Micro-Raman spectroscopy and X-ray diffraction (XRD) were used to investigate the formation of the PZT perovskite phase. X-ray diffraction revealed that the film showed good crystallinity and no presence of secondary phases was identified. This indicates that the PZT thin films were crystallized in a single phase. PZT thin films showed a well-developed dense grain structure with uniform distribution, without the presence of rosette structure. The Raman spectra undoubtedly revealed these thin films in the tetragonal phase. For the thin films annealed at the 500-700 degreesC range, the vibration modes of the oxygen sublattice of the PZT perovskite phase were confirmed by FT-IR. The room temperature dielectric constant and dielectric loss of the PZT films, measured at 1 kHz were 646 and 0.090, respectively, for thin film with 365 nm thickness annealed at 700 degreesC for 2 h. A typical P-E hysteresis loop was observed and the measured values of P-s, P-r and E-c were 68 muC/cm(2), 44 muC/cm(2) and 123 kV/cm, respectively. The leakage current density was about 4.8 x 10(-7) A/cm(2) at 1.5 V. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes optimized conditions for preparation of a cobalt complex entrapped in alumina amorphous materials in the form of powder. The hybrid materials, CoNHG, were obtained by a nonhydrolytic sol-gel route through condensation of aluminum chloride with diisopropylether in the presence of cobalt chloride. The materials were calcined at various temperatures. The presence of cobalt entrapped in the alumina matrix is confirmed by ultraviolet visible spectroscopy. The materials have been characterized by X-ray diffraction (XRD), surface area analysis, thermogravimetric analysis (TGA), differential thermal analyses (DTA) and transmission electron microscopy (TEM). The prepared alumina matrix materials are amorphous, even after heat treatment up to 750 degreesC. The XRD, TGA/DTA and TEM data support the increase of sample crystallization with increasing temperature. The specific surface area, pore size and pore diameter changed as a function of the heat treatment temperature employed. Different heat treatment temperatures result in materials with different compositions and structures, and influence their catalytic activity. The entrapped cobalt materials calcined at 750 degreesC efficiently catalyzed the epoxidation of (Z)-cyclooctene using iodozylbenzene as the oxygen donor. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of phenolic resins' thermospheres covered by a magnetic phase of iron oxide. The thermospheres were prepared by allowing phenol and formaldehyde to react under dispersion polymerization conditions and the iron oxide phase was incorporated in situ onto the phenolic resin particles by adding concentrated NH3 to FeCl2 in DMSO. This reaction was conducted at 70 degrees C under nitrogen atmosphere in a controlled temperature vessel, and the modified resin was isolated and dried in vacuo. Both pure and modified resins were characterized by DRX, TG- DTA, and MEV/ EDX. The modified particles were attracted by a magnetic field, indicating the fixation of magnetic iron oxide. No diffraction peaks were observed in DRX analysis; thermal analysis ( DTA) of both pure and modified resins presented exothermic events between 300 and 680 degrees C, and 300 and 570 degrees C, respectively, indicating the microstructure of the resin was modified after the treatment. Thermogravimetric analysis ( TGA) of the pure resin registered a 2.0% residue, compared to 8.0% for the modified resin. These residues correspond to about 7.0% of fixed iron oxide. MEV/ EDX analyses confirm the modification of the resins by the process of fixing iron oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimized conditions for the preparation of a new manganese porphyrinosilica-template material are reported. The manganese porphyrinosilica-template was prepared by the sol-gel process, by the reaction of -SO2Cl groups present in the phenyl rings of MnTDC(SO2Cl)PPCl with 3-aminopropyltriethoxysilane. The reaction produces a precursor porphyrinopropylsilyl species, which were then polymerized with tetraethoxysilane. The presence of manganese porphyrin on xerogel is confirmed by ultraviolet visible absorption spectroscopy and thermogravimetric analysis (TGA). The prepared materials have surface areas between 19 and 674 m2 g-1. Electron spectroscopy imaging of the materials show that manganese distribution in the xerogel is uniform. Both manganese(III) porphyrinosilica-template and a similar iron(III) porphyrinosilica-template can catalyze the epoxidation of cyclooctene using iodozylbenzene as oxygen donor. The metalloporphyrinosilica-template presents catalytic activity similar to that of metaloporphyrin in solution. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposits formed on the surface of. paper were analysed in order to identify the sources of the defects, as well as to solve the problems associated with performance and adjustments at the wet end of the paper forming process. Standard paper samples containing deposits were collected and analysed by comparing the microstructure and composition of the deposit with paper regions adjacent to it. Optical microscopy (OM). energy dispersive X-ray microanalysis (EDX) X-ray powder diffraction (XRD). thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were the techniques used in this study. The results obtained from the EDX, XRD. and TG techniques allowed concluding that the calcium carbonate content in the farm of calcite is 1.6 times higher in the formed deposit them the quantity expected in the standard paper composition. The paper sample microstructure revealed by the SEM images indicates the presence of irregular spherical aggregates up to 20μm in diameter in the deposit region. containing larger amount of calcium carbonate as well as in the regions adjacent to the deposit. These spherical aggregates seem to be absorbed and integrated into the pulp fibres and present characteristics similar to those of partially cooked cationic starch. The analysed deposits are characterised by a dense and thick substance, forming a plate with highly adhesive property. This adhesive substance has a characteristic similar to glue with a large amount of organic matter due to the high weight loss shown by the TG curve. The results are consistent with the interaction ofparticles of negatively charged calcium carbonate and cationic starch, forming sterically stabilized deposits, which firmly adhere to the paper microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)