922 resultados para Th1 Cells -- secretion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracrine signalling mediated via cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear if IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy. Here we found that plasma levels of IL-22 and its upstream cytokine IL-23 are highly elevated in patients after major liver resection. In a mouse model of partial hepatectomy, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1-/- and Rag2-/- γc-/- mice we show that the main producers of IL-22 post partial hepatectomy are conventional natural killer cells and innate lymphoid cells type 1. Extracellular ATP, a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2 type nucleotide receptors P2X1 and P2Y6 significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury and impaired liver regeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthetic amino acid copolymer copolymer 1 (Cop 1) suppresses experimental autoimmune encephalomyelitis (EAE) and is beneficial in multiple sclerosis. To further understand Cop 1 suppressive activity, we studied the cytokine secretion profile of various Cop 1-induced T cell lines and clones. Unlike T cell lines induced by myelin basic protein (MBP), which secreted either T cell helper type 1 (Th1) or both Th1 and Th2 cytokines, the T cell lines/clones induced by Cop 1 showed a progressively polarized development toward the Th2 pathway, until they completely lost the ability to secrete Th1 cytokines. Our findings indicate that the polarization of the Cop 1-induced lines did not result from the immunization vehicle or the in vitro growing conditions, but rather from the tendency of Cop 1 to preferentially induce a Th2 response. The response of all of the Cop 1 specific lines/clones, which were originated in the (SJL/J×BALB/c)F1 hybrids, was restricted to the BALB/c parental haplotype. Even though the Cop 1-induced T cells had not been exposed to the autoantigen MBP, they crossreacted with MBP by secretion of interleukin (IL)-4, IL-6, and IL-10. Administration of these T cells in vivo resulted in suppression of EAE induced by whole mouse spinal cord homogenate, in which several autoantigens may be involved. Secretion of anti-inflammatory cytokines by Cop 1-induced suppressor cells, in response to either Cop 1 or MBP, may explain the therapeutic effect of Cop 1 in EAE and in multiple sclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the signaling pathways coupling gonadotropin-releasing hormone (GnRH) secretion to elevations in cAMP levels in the GT1 GnRH-secreting neuronal cell line. We hypothesized that increased cAMP could be acting directly by means of cyclic nucleotide-gated (CNG) cation channels or indirectly by means of activation of cAMP-dependent protein kinase (PKA). We showed that GT1 cells express the three CNG subunits present in olfactory neurons (CNG2, -4.3, and -5) and exhibit functional cAMP-gated cation channels. Activation of PKA does not appear to be necessary for the stimulation of GnRH release by increased levels of cAMP. In fact, pharmacological inhibition of PKA activity caused an increase in the basal secretion of GnRH. Consistent with this observation activation PKA inhibited adenylyl cyclase activity, presumably by inhibiting adenylyl cyclase V expressed in the cells. Therefore, the stimulation of GnRH release by elevations in cAMP appears to be the result of depolarization of the neurons initiated by increased cation conductance by cAMP-gated cation channels. Activation of PKA may constitute a negative-feedback mechanisms for lowering cAMP levels. We hypothesize that these mechanisms could result in oscillations in cAMP levels, providing a biochemical basis for timing the pulsatile release of GnRH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interleukin (IL)-18, formerly called interferon γ (IFN-γ)-inducing factor, is biologically and structurally related to IL-1β. A comparison of gene expression, synthesis, and processing of IL-18 with that of IL-1β was made in human peripheral blood mononuclear cells (PBMCs) and in human whole blood. Similar to IL-1β, the precursor for IL-18 requires processing by caspase 1. In PBMCs, mature but not precursor IL-18 induces IFN-γ; in whole human blood stimulated with endotoxin, inhibition of caspase 1 reduces IFN-γ production by an IL-1β-independent mechanism. Unlike the precursor for IL-1β, precursor for IL-18 was expressed constitutively in PBMCs and in fresh whole blood from healthy human donors. Western blotting of endotoxin-stimulated PBMCs revealed processed IL-1β in the supernatants via an caspase 1-dependent pathway. However, in the same supernatants, only unprocessed precursor IL-18 was found. Unexpectedly, precursor IL-18 was found in freshly obtained PBMCs and constitutive IL-18 gene expression was present in whole blood of healthy donors, whereas constitutive IL-1β gene expression is absent. Similar to human PBMCs, mouse spleen cells also constitutively contained the preformed precursor for IL-18 and expressed steady-state IL-18 mRNA, but there was no IL-1β protein and no spontaneous gene expression for IL-1β in these same preparations. We conclude that although IL-18 and IL-1β are likely members of the same family, constitutive gene expression, synthesis, and processing are different for the two cytokines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classic view for hypothalamic regulation of anterior pituitary (AP) hormone secretion holds that release of each AP hormone is controlled specifically by a corresponding hypothalamic-releasing hormone (HRH). In this scenario, binding of a given HRH (thyrotropin-, growth hormone-, corticotropin-, and luteinizing hormone-releasing hormones) to specific receptors in its target cell increases the concentration of cytosolic Ca2+ ([Ca2+]i), thereby selectively stimulating the release of the appropriate hormone. However, “paradoxical” responses of AP cells to the four well-established HRHs have been observed repeatedly with both in vivo and in vitro systems, raising the possibility of functional overlap between the different AP cell types. To explore this possibility, we evaluated the effects of HRHs on [Ca2+]i in single AP cells identified immunocytochemically by the hormone they stored. We found that each of the five major AP cell types contained discrete subpopulations that were able to respond to several HRHs. The relative abundance of these multi-responsive cells was 59% for lactotropes, 33% for thyrotropes, and in the range of 47–55% for gonadotropes, corticotropes, and somatotropes. Analysis of prolactin release from single living cells revealed that each of the four HRHs tested were able to induce hormone release from a discrete lactotrope subpopulation, the size of which corresponded closely to that in which [Ca2+]i changes were induced by the same secretagogues. When viewed as a whole, our diverse functional measurements of multi-responsiveness suggest that hypothalamic control of pituitary function is more complicated than previously envisioned. Moreover, they provide a cellular basis for the so-called “paradoxical” behavior of pituitary cells to hypothalamic hypophysiotropic agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microsomal triglyceride (TG) transfer protein (MTP) is a heterodimeric lipid transfer protein that catalyzes the transport of triglyceride, cholesteryl ester, and phosphatidylcholine between membranes. Previous studies showing that the proximal cause of abetalipoproteinemia is an absence of MTP indicate that MTP function is required for the assembly of the apolipoprotein B (apoB) containing plasma lipoproteins, i.e., very low density lipoproteins and chylomicrons. However, the precise role of MTP in lipoprotein assembly is not known. In this study, the role of MTP in lipoprotein assembly is investigated using an inhibitor of MTP-mediated lipid transport, 2-[1-(3, 3-diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-o ne (BMS-200150). The similarity of the IC50 for inhibition of bovine MTP-mediated TG transfer (0.6 microM) to the Kd for binding of BMS-200150 to bovine MTP (1.3 microM) strongly supports that the inhibition of TG transfer is the result of a direct effect of the compound on MTP. BMS-200150 also inhibits the transfer of phosphatidylcholine, however to a lesser extent (30% at a concentration that almost completely inhibits TG and cholesteryl ester transfer). When BMS-200150 is added to cultured HepG2 cells, a human liver-derived cell line that secretes apoB containing lipoproteins, it inhibits apoB secretion in a concentration dependent manner. These results support the hypothesis that transport of lipid, and in particular, the transport of neutral lipid by MTP, plays a critical role in the assembly of apoB containing lipoproteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Abeta peptide of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APP), which are considered type I transmembrane glycoproteins. Recently, however, soluble forms of full-length APP were also detected in several systems including chromaffin granules. In this report we used antisera specific for the cytoplasmic sequence of APP to show that primary bovine chromaffin cells secrete a soluble APP, termed solAPPcyt, of an apparent molecular mass of 130 kDa. This APP was oversecreted from Chinese hamster ovary cells transfected with a full-length APP cDNA indicating that solAPPcyt contained both the transmembrane and Abeta sequence. Deglycosylation of solAPPcyt showed that it contained both N- and O-linked sugars, suggesting that this APP was transported through the endoplasmic reticulum-Golgi pathway. Secretion of solAPPcyt from primary chromatin cells was temperature-, time-, and energy-dependent and was stimulated by cell depolarization in a Ca2+-dependent manner. Cholinergic receptor agonists, including acetylcholine, nicotine, or carbachol, stimulated the rapid secretion of solAPPcyt, a process that was inhibited by cholinergic antagonists. Stimulation of solAPPcyt secretion was paralleled by a stimulation of secretion in catecholamines and chromogranin A, indicating that secretion of solAPPcyt was mediated by chromaffin granule vesicles. Taken together, our results show that release of the potentially amyloidogenic solAPPcyt is an active cellular process mediated by both the constitutive and regulated pathways. solAPPcyt was also detected in human cerebrospinal fluid. Combined with the neuronal physiology of chromaffin cells, our data suggest that cholinergic agonists may stimulate the release of this APP in neuronal synapses where it may exert its biological functions. Moreover, vesicular or secreted solAPPcyt may serve as a soluble precursor of Abeta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compared the antigen-specific antibody isotypes and lymphokine secretion by CD4+ T cells in BALB/c mice immunized intradermally with either Escherichia coli beta-galactosidase (beta-gal) or plasmid DNA (pDNA) encoding beta-gal in a cytomegalovirus-based expression vector (pCMV-LacZ). pCMV-LacZ induced mainly IgG2a, whereas beta-gal in saline or alum induced IgG1 and IgE beta-gal-specific antibodies. In addition, splenic CD4+ T helper (Th) cells isolated from pDNA-immunized mice secreted interferon-gamma but not interleukin (IL)-4 and IL-5, whereas Th cells from beta-gal-injected mice secreted IL-4 and IL-5 but not interferon-gamma after in vitro stimulation with antigen. Together these data demonstrate that pDNA immunization induced a T helper type 1 (Th1) response, whereas protein immunization induced a T helper type 2 (Th2) response to the same antigen. Interestingly, priming of mice with pCMV-LacZ prevented IgE antibody formation to a subsequent i.p. beta-gal in alum injection. This effect was antigen-specific, because priming with pCMV-LacZ did not inhibit IgE anti-ovalbumin antibody formation. Most importantly, intradermal immunization with pCMV-LacZ (but not pCMV-OVA) of beta-gal in alum-primed mice caused a 66-75% reduction of the IgE anti-beta-gal titer in 6 weeks. Also, pCMV-LacZ induced specific IgG2a antibody titers and interferon-gamma secretion by Th cells in the beta-gal in alum-primed mice. The data demonstrate that gene immunization induces a Th1 response that dominates over an ongoing protein-induced Th2 response in an antigen-specific manner. This suggests that immunization with pDNA encoding for allergens may provide a novel type of immunotherapy for allergic diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurodegenerative processes in Alzheimer disease (AD) are thought to be driven in part by the deposition of amyloid beta (A beta), a 39- to 43-amino acid peptide product resulting from an alternative cleavage of amyloid precursor protein. Recent descriptions of in vitro neurotoxic effects of A beta support this hypothesis and suggest toxicity might be mediated by A beta-induced neuronal calcium disregulation. In addition, it has been reported that "aging" A beta results in increased toxic potency due to peptide aggregation and formation of a beta-sheet secondary structure. In addition, A beta might also promote neuropathology indirectly by activating immune/inflammatory pathways in affected areas of the brain (e.g., cortex and hippocampus). Here we report that A beta can modulate cytokine secretion [interleukins 6 and 8 (IL-6 and IL-8)] from human astrocytoma cells (U-373 MG). Freshly prepared and aged A beta modestly stimulated IL-6 and IL-8 secretion from U-373 MG cells. However, in the presence of interleukin-1 beta (IL-1 beta), aged, but not fresh, A beta markedly potentiated (3- to 8-fold) cytokine release. In contrast, aged A beta did not potentiate substance P (NK-1)- or histamine (H1)-stimulated cytokine production. Further studies showed that IL-1 beta-induced cytokine release was potentiated by A beta-(25-35), while A beta-(1-16) was inactive. Calcium disregulation may be responsible for the effects of A beta on cytokine production, since the calcium ionophore A23187 similarly potentiated IL-1 beta-induced cytokine secretion and EGTA treatment blocked either A beta or A23187 activity. Thus, chronic neurodegeneration in AD-affected brain regions may be mediated in part by the ability of A beta to exacerbate inflammatory pathways in a conformation-dependent manner.