941 resultados para Textual information processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to establish an active internal know-how -reserve~ in an information processing and engineering services . company, a training architecture tailored to the company as an whole must be defined. When a company' s earnings come from . advisory services dynamically structured i.n the form of projects, as is the case at hand, difficulties arise that must be taken into account in the architectural design. The first difficulties are of a psychological nature and the design method proposed here begjns wi th the definition of the highest training metasystem, which is aimed at making adjustments for the variety of perceptions of the company's human components, before the architecture can be designed. This approach may be considered as an application of the cybernetic Law of Requisita Variety (Ashby) and of the Principle of Conceptual Integrity (Brooks) . Also included is a description of sorne of the results of the first steps of metasystems at the level of company organization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cover title.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Contributed to the Federal Information Processing Standards Task Group 15 - Computer Systems Security" -t.p.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caffeine is known to increase arousal, attention, and information processing-all factors implicated in facilitating persuasion. In a standard attitude-change paradigm, participants consumed an orange-juice drink that either contained caffeine (3.5 mg/kg body weight) or did not (placebo) prior to reading a counterattitudinal communication (anti-voluntary euthanasia). Participants then completed a thought-listing task and a number of attitude scales. The first experiment showed that those who consumed caffeine showed greater agreement with the communication (direct attitude: voluntary euthanasia) and on an issue related to, but not contained in, the communication (indirect attitude: abortion). The order in which direct and indirect attitudes were measured did not affect the results. A second experiment manipulated the quality of the arguments in the message (strong vs. weak) to determine whether systematic processing had occurred. There was evidence that systematic processing occurred in both drink conditions, but was greater for those who had consumed caffeine. In both experiments, the amount of message-congruent thinking mediated persuasion. These results show that caffeine can increase the extent to which people systematically process and are influenced by a persuasive communication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly